
NEEC RESEARCH: GPS-DENIED LANDING OF UAVS ON SHIPS 1

NEEC Research: Toward GPS-denied Landing of

Unmanned Aerial Vehicles on Ships at Sea
Stephen M. Chaves, Ryan W. Wolcott, and Ryan M. Eustice

Fig. 1: Real-time visualization of the proposed system for autonomously landing a UAV on a transiting ship. The UAV estimates its
relative-pose to the landing platform through observations of fiducial markers and an EKF. Our visualization displays the UAV trajectory,
control commands, waypoints, fiducial marker detections, estimated poses of the UAV and landing platform, and an embedded stream of
the UAV’s onboard camera images.

Abstract—This paper reports on a Naval Engineering Edu-
cation Center (NEEC) design-build-test project focused on the
development of a fully autonomous system for landing Navy
unmanned aerial vehicles (UAVs) on transiting ships at sea. Our
NEEC team of engineering students researched image processing
techniques, estimation frameworks, and control algorithms to
collaboratively learn and train in Navy-relevant autonomy. We
accomplished the autonomous landing using fiducial markers
detected by a camera onboard the UAV, decomposed the resulting
homography into 6-degree of freedom relative-pose information
between the UAV and landing platform, performed state esti-
mation with a delayed-state extended Kalman filter, and then
executed the motion control. Results for the state estimation
framework and experimental tests using a motion capture sys-
tem for independent ground-truth are presented. The proposed
system performed successfully on a robotic testbed consisting of
a micro UAV and an unmanned ground vehicle.

Keywords: UAV, autonomy, future Navy, robotics, estimation,
computer vision, image processing.

I. INTRODUCTION

Unmanned autonomous systems are playing an ever-

growing and more crucial role in the Navy active fleet [1],

[2]. As such, the U.S. Navy has a need to investigate the

Manuscript received April 2013. This work was supported by the Naval Sea
Systems Command through the Naval Engineering Education Center (NEEC)
under contract number N65540-10-C-003.

The authors are with the Perceptual Robotics Laboratory at the University of
Michigan. S. Chaves is a PhD student in the Dept. of Mechanical Engineering,
R. Wolcott is a PhD student in the Dept. of Computer Science, and R. Eustice
is an Associate Professor in the Dept. of Naval Architecture and Marine
Engineering.

science and technology behind the next-generation of un-

manned autonomous systems, and to educate and hire a cross-

disciplinary civilian workforce trained in this area. In this

paper, we report on a Naval Engineering Education Center

(NEEC) project that is helping to fill that role by educating

and training an undergraduate and graduate student cohort in

the cross-disciplinary issues in developing robust autonomy

for unmanned vehicle systems. We focus the content of this

paper on the project research and tools used for training our

team of students.

During the 2011-2012 academic year, our team of students

investigated image processing techniques, estimation frame-

works, and control algorithms in order to develop a new system

for autonomously landing an unmanned aerial vehicle (UAV)

on the deck of a Navy ship, regarded as one of the most

difficult autonomous tasks for military aviation [3], [4].

Currently, the active duty UAVs in use by the Navy rely

on systems that communicate between the UAV and the

ship. One such method used by the Northrop Grumman

FireScout UAV employs a ship-mounted millimeter-wave radar

and corresponding transponder to guide the UAV during the

landing [5]. Another method that depends on vehicle-to-

ship communcation is to use a local ship-borne real-time

kinematic (RTK) global positioning system (GPS) and UAV-

to-ship communications for precise localization and command

execution, as with the recently-developed Northrop Grumman

X-47B [6]. Autonomous landing tests by the X-47B onto

active-duty aircraft carriers are already in progress, however,

these methods rely on systems external to the UAV itself, and



2 NEEC RESEARCH: GPS-DENIED LANDING OF UAVS ON SHIPS

can be jammed, scrambled, or spoofed [7]. Thus, a more robust

method for autonomous landing is desired, without sacrificing

any of the localization accuracy provided by GPS or radar.

There has been significant previous work on the topic of

GPS-denied autonomous landings of UAVs on ships. Oh et.

al. proposed using a tether between the UAV and ship to aid in

tracking the ship’s motion [8]. Garratt et al. combined an opti-

cal beacon with a laser rangefinder to create a passive landing

system that does not rely on a vehicle-to-ship connection [9].

A method based on visual servoing is given by Coutard et al.

in [4], but requires a continuous, uninterrupted view of visual

features on the ship deck. Herisse et al. developed a visual

system based on optical flow measurements, but assume the

normal of the landing platform is known [10]. Recently, Arora

et al. demonstrated a lidar and camera-based shipdeck tracking

system on a full-size helicopter [11]. The work closest to ours

in terms of proposed system and experimental demonstrations

is that of Richardson et al. [12], who independently and

in parallel developed a visual tracking system using known

markers to estimate the relative-pose between the UAV and

landing platform. Their work focuses heavily on the control

system design and testing against disturbances like wind gusts

and lighting variation.

In this paper, we propose a system for autonomous UAV

landings that is centered on computer vision techniques and a

delayed-state estimation framework. The system runs entirely

onboard the UAV and no communication to it is necessary to

perform the landing. It relies on no external systems, like GPS,

and features only the UAV’s onboard processors and sensors,

and a marked landing platform on the ship deck. Further, the

state estimator provides robustness to interrupted views of the

landing platform.

A. Conceptual Overview

Conceptually, the proposed system for autonomous landing

is straightforward. A camera is mounted on the UAV in such

a way as to view the landing platform on the ship during

approach and descent. (On our experimental platform, this was

a single forward-looking camera angled slightly downward.)

The only component of the system present on the Navy ship is

one or more fiducial markers that designate the landing area

on the ship’s deck. The number, size, and visual attributes

of markers are application-dependent. They should clearly

outline the landing area, but generally be within the field of

view of the UAV’s onboard camera throughout the landing

process, although the state estimator can account for temporary

occlusions or interruptions in view.

On the UAV itself, the system is composed of an inertial

measurement unit (IMU), the onboard camera, and a central

processor for running all algorithms and handling inter-process

communication. The system uses the camera’s video stream to

detect the fiducial markers on the landing platform. Then, the

image processing algorithm uses these detections to extract

relative-pose information between the UAV and the landing

target. This information is fused with measurements from

the UAV’s inertial sensor in a delayed-state extended Kalman

filter (EKF) to give a more accurate state estimate and real-

time operation. Using the localization estimate, the UAV

Coordinate Frames

Fig. 2: View of example coordinate frames and pose relations for the
proposed landing system. xlv is the pose of the vehicle with respect
to the local frame, xls is the pose of the ship with respect to the
local frame, xvc is the pose from vehicle to camera, xct is the pose
from camera to tag, xts is the pose from tag to ship, and xvs is the
pose from vehicle to ship.

executes the autonomous landing maneuver. Fig. 1 provides

a visualization of the system in operation.

With this design, the system is purely passive and does not

depend at all upon outside communication. The fiducial marker

detections allow the system to estimate the full 6-degree

of freedom (DOF) pose information of the UAV and ship,

enabling operation in rough sea states with a significantly-

pitching and rolling shipdeck.

II. BACKGROUND INFORMATION

Here we present some necessary background information

for understanding the operation of the proposed autonomous

landing system. The system relies on relative-pose measure-

ments originating from the camera onboard the UAV relating

the UAV pose to the ship pose. Thus, it is important to

understand the coordinate frames used and the appropriate

mathematical operations for correctly transforming informa-

tion between frames.

A. Coordinate Frames

The UAV frame follows right-handed z-down convention

such that the positive x-axis is oriented along the UAV’s

forward direction of travel, and the frame is centered and

aligned with the axes of the onboard IMU. The camera frame

is fixed with respect to the UAV frame, but translated and

rotated such that the positive z-axis points out of the camera

lens. The x-axis points to the right from the image center and

the y-axis points down, forming a right-handed frame.

The ship frame also follows right-handed z-down convention

and is positioned at the center of the landing platform. Finally,

we define a North-East-Down (NED) local frame that is fixed

with respect to the world and initialized by the system at an

arbitrary location. Refer to Fig. 2 for a depiction of the system

coordinate frames.

We can now define the pose of frame j with respect to frame

i as the 6-DOF vector

xij = [it⊤ij ,Θ
⊤
ij ]

⊤ = [xij , yij , zij , φij , θij , ψij ]
⊤, (1)

composed of the translation vector from frame i to frame j as

defined in frame i and the roll, pitch, and heading Euler angles.



3

Fig. 3: The head-to-tail operation of coordinate frame poses.

Then, the homogeneous coordinate transformation from frame

j to frame i is written as

i
jH =

[

i
jR

i
t
⊤
ij

0 1

]

(2)

where i
jR is the orthonormal rotation matrix that rotates frame

j into frame i and is defined as

i
jR = rotxyz(Θij) = rotz(ψij)

⊤roty(θij)
⊤rotx(φij)

⊤. (3)

B. Coordinate Frame Operations

We present here coordinate frame operations that are nec-

essary for relating pose estimates to useful information about

the UAV and the ship deck. Further details about coordinate

frames and operations can be found in [13].

1) Head-to-Tail Operation: The compounding of two

frames is described by the head-to-tail operation (see Fig. 3),

which is defined as xik = xij ⊕ xjk, with corresponding

homogeneous coordinate transform from frame k to frame i

given by i
kH = i

jH
j
kH. Given random variables xij and xjk,

the Jacobian for the head-to-tail is denoted as

J⊕ =
∂xik

∂(xij ,xjk)
=

[

J⊕1 J⊕2

]

. (4)

2) Inverse Operation: Reversing a relationship between

coordinate frames is described by the inverse operation and

is denoted as xji = ⊖xij , where the homogeneous coordinate

transform is simply
j
iH = i

jH
−1

. The Jacobian of the inverse

operation is denoted as

J⊖ =
∂xji

∂xij

. (5)

3) Tail-to-Tail Operation: The tail-to-tail operation de-

scribes the relationship between two coordinate frames that are

already expressed in a common frame. In this case, the tail-

to-tail operation is composed of an inverse operation followed

by a head-to-tail operation, as denoted as

xjk = ⊖xij ⊕ xik (6)

= xji ⊕ xik. (7)

As expected, the homogeneous coordinate transform for the

tail-to-tail operation is given by
j
kH = j

iH
i
kH = i

jH
−1 i

kH and

the Jacobian is found by

⊖J⊕ =
∂xjk

∂(xij ,xik)
(8)

=
∂xjk

∂(xji,xik)
·
∂(xji,xik)

∂(xij ,xik)
(9)

=
[

J⊕1J⊖ J⊕2

]

. (10)

Fig. 4: Sample AprilTag fiducial markers, corresponding detection
boxes, and a view of the relative-poses from camera to tags. We use
AprilTags [14] in our system to simplify the image processing task
of detecting the landing platform.

III. SYSTEM DESCRIPTION

We now present a full description of the proposed au-

tonomous landing system, divided into three main modules,

namely (i) image processing, (ii) state estimation, and (iii)

motion control. These three modules together define the core

methodology of the design, and are presented in detail below.

A. Image Processing

The proposed system hinges upon the detection of fiducial

markers by the UAV’s onboard camera in order to per-

form the autonomous landing. The fiducial markers serve as

information-rich features from which the UAV extracts the

relative-pose of the landing platform to feed to the state

estimation framework.

The fiducial detection system employed by our experimental

testbed (described later) is called AprilTag [14]. The AprilTag

markers (see Fig. 4) are high-contrast 2D tags, similar to QR

codes, but designed to be robust to low image resolution,

occlusions, rotations, and lighting variation. For robustness,

these tags should be asymmetric and composed of high-

contrast colors to facilitate detection by the UAV’s cameras.

Tag detection in an image begins by analyzing each pixel’s

gradient direction and magnitude and clustering pixels by

similar gradient characteristics. From the clustering, directed

line segments are filtered out and examined for formations of

candidate markers.

With points from a candidate marker, the Direct Linear

Transform (DLT) algorithm [15] solves the homography map-

ping the tag coordinate frame to the camera frame, t
cH, and

the candidate is compared for a match against a database of

pre-trained markers. Using a priori calibration information of

the camera’s focal length and the actual size of the fiducial

marker of interest, we calculate the 6-DOF relative-pose of

the tag frame with respect to the UAV camera frame, i.e. xct,

which is then fed to the state estimation framework as an

observation.

It is worth noting that other types of pre-trained fiducial

markers can be used, as in [12].

B. State Estimation

State estimation for the proposed system is accomplished in

a delayed-state EKF framework [16]. The filter estimates and

tracks both the UAV and landing platform poses with respect

to the local frame, which is arbitrarily initialized at start.



4 NEEC RESEARCH: GPS-DENIED LANDING OF UAVS ON SHIPS

1) UAV Estimation: At first, the state vector in the EKF

is composed of only the UAV (v) pose relative to the local

frame (l), as well as its velocities and rates. The state vector

is written as the 12-element vector xKF as

xv = [x⊤
lv,

l v⊤v ,
l w⊤

v ]
⊤, (11)

xKF = xv (12)

where lvv = [u, v, w]⊤ and lwv = [p, q, r]⊤ are the local-

frame velocities and angular velocities, respectively. We em-

ploy a simple constant velocity process model with white

Gaussian noise induced on the velocity terms for the UAV,

given by

x̄KFk
= Fk−1xKFk−1

+wk−1, (13)

with process noise wk−1 ∼ N (0,Qk−1) and Fk−1 = Fxv

where

Fxv
=

[

I6×6 ∆t · I6×6

06×6 I6×6

]

. (14)

2) Ship Initialization: Upon first observation of the landing

platform from the camera, we augment the state vector to

include the local-frame pose, velocities, and rates of the ship

(s). Now, the EKF state vector is written as the 24-element

vector xKF = [x⊤
v ,x

⊤
s ]

⊤ with

xv = [x⊤
lv,

l v⊤
v ,

l w⊤
v ]

⊤, (15)

xs = [x⊤
ls,

l v⊤
s ,

l w⊤
s ]

⊤. (16)

To remain consistent with the assumption of the ship’s

strictly planar dynamics, we use a planar constant velocity

model for the ship, where white Gaussian noise is added to

the ship’s planar velocity terms, such that its linear process

model is

Fxs
=









I2×2 02×4 ∆t · I2×2 02×4

04×2 I4×4 04×2 04×4

02×2 02×4 I2×2 02×4

04×2 04×4 04×2 I4×4









(17)

and the process model for the full 24-element state vector is

the block diagonal matrix

Fk−1 =

[

Fxv
012×12

012×12 Fxs

]

. (18)

3) Sensor Observation Models: Two types of sensor ob-

servations are included in the EKF formulation: observations

from the UAV’s IMU and camera observations forwarded

by the image processing algorithm. The generic observation

model is described by the nonlinear (but differentiable) func-

tion

zx[k] = hx(xKFk
) + vx[k], (19)

with observation noise vx[k] ∼ N (0,Rx[k]), where x denotes

the sensor, either IMU or tag.

The IMU configuration used in our experimental testbed

does some low-level processing before returning observations,

so the IMU actually reports a sensor packet that contains UAV

altitude, Euler angles, and horizontal body-aligned x and y

velocities. As such, the IMU sensor model is given as

hIMU (xKF ) =

















zlv
φlv
θlv
ψlv

ulv cosψlv + vlv sinψlv

vlv cosψlv − ulv sinψlv

















, (20)

with Jacobian

HIMU =
∂hIMU

∂xKF

=

[

∂hIMU

∂xv

∂hIMU

∂xs

]

(21)

=

[

∂hIMU

∂xv

06×12

]

. (22)

From the state vector, we have estimates of both the UAV

pose, xlv , and ship pose, xls, with respect to the local frame.

The static coordinate transforms xvc and xsti denote the pose

of the camera frame relative to the UAV frame and the ith tag

coordinate frame relative to the ship, respectively. Thus, we

can compute the relative-pose of an individual tag with respect

to the camera from a series of coordinate frame operations,

resulting in the sensor model for individual tag observations,

htagi
(xKF ) = xcti = (⊖xvc ⊕ (⊖xlv ⊕ xls))⊕ xsti (23)

with Jacobian Htag .

4) Discrete Extended Kalman Filter: The state vector input

to the extended Kalman filter is assumed to be normally

distributed with mean and covariance as xKF ∼ N (µ,Σ),
where the covariance blocks are written out as

Σ =

[

Σxv
Σxvxs

Σxsxv
Σxs

]

. (24)

We define a discrete-time process model and include nonlinear

discrete sensor observations, so the estimation framework

is written as a discrete first-order EKF with the following

prediction and update steps.

Predict µ̄k = Fk−1µk−1

Σ̄k = Fk−1Σk−1Fk−1
⊤ +Qk−1

Update Kk = Σ̄kHx
⊤(HxΣ̄kHx

⊤ +Rx[k])
−1

µk = µ̄k +Kk(zx[k]− hx(µ̄k))

Σk = (I−KkHx)Σ̄k(I−KkHx)
⊤ +KkRx[k]Kk

⊤

(25)

In these equations, x̄KFk
∼ N (µ̄k, Σ̄k) represents the

predicted state vector at time k, Kk represents the Kalman

gain, Fk−1 represents the process model, and Hx represents

the observation model Jacobian. During an update step, the Ja-

cobian is evaluated at the predicted state estimate and applied

to the covariance. We use the Joseph form of the covariance

update equation to ensure a positive-definite covariance [17].



5

5) Delayed-State Formulation: Because of the latency

present in the camera image pipeline, an observation of the

fiducial markers on the landing platform is received by the

state estimation framework at a time later than the time of

image capture. This means that the current camera observation

does not directly correspond to the current state estimate, but

rather corresponds to a state estimate in the past. On our

experimental testbed, latencies for incorporating camera mea-

surements were on the order of several hundred milliseconds.

Most of this delay was due to streaming data to and from the

micro UAV and the processing laptop. The image processing

module itself has a computation time on the order of tens of

milliseconds.

No matter the duration of the latency, the framework for

the EKF must be modified to accommodate these delayed

observations [16]. We handle this modification by augmenting

a history of UAV and ship poses into the state estimate such

that the state vector is

xDSk
= [x⊤

KFk
,x⊤

KFk−1
, . . . ,x⊤

KFk−n
]⊤ (26)

where n is the number of delayed-states.

We then augment the rest of the EKF framework to handle

the delayed-state formulation. The constant velocity process

model continues to act on only the current UAV and ship

poses, so the process model becomes

x̄DSk
=











x̄KFk

x̄KFk−1

...

x̄KFk−n











=











Fk−1xKFk−1
+wk−1

xKFk−1

...

xKFk−n











. (27)

Similarly, the IMU sensor model Jacobian becomes

HDSIMU
=

[

HIMU 06×(24 ·n)
]

. (28)

Lastly, we must modify the tag observation model to account

for the delayed measurement received from the image pro-

cessing algorithm. Since these measurements are a function

of the delayed-states, the observation model corresponding to

the image captured at the time of delayed-state k is given by

hDStagi
(xDS) = xcti [k] = (⊖xvc⊕(⊖xlv[k]⊕xls[k]))⊕xsti

(29)

with corresponding Jacobian HDStag
.

After the Kalman filter update is performed for each delayed

observation, we marginalize the corresponding delayed-state

from the EKF, as well as any previous delayed-states. This

is accomplished by striking the associated entries in the state

vector and covariance matrix. In this way, the filter carries only

the current state and a short history of delayed-states with not-

yet-accounted-for image measurements. Further, we limit the

number of delayed-states to reduce the overall state size in the

EKF.

The state estimator tracks the UAV and ship local-poses

in order to initialize and process observations easily, but the

relative-pose from UAV to ship, i.e. xvs, is the actual quantity

of interest for the rest of our system. The relative-pose is

derived from the state vector as

xvs = ⊖xlv ⊕ xls (30)

with corresponding covariance calculated using the tail-to-tail

Jacobian,

Σxvs
= ⊖J⊕

[

Σxv
Σxvxs

Σxsxv
Σxs

]

⊖J⊕
⊤. (31)

From this formulation, the state estimation framework returns

an accurate, filtered, continuous real-time estimate of the

relative-pose and uncertainty from the UAV to the ship from

which the motion control module executes the autonomous

landing.

C. Motion Control

The motion control module is the final component of the

overall methodology of the proposed system. The motion

controller is responsible for the planning and execution of the

landing event. We subdivide the motion control module into a

mission manager (described later) and two controllers – a low-

level attitude controller to stabilize the vehicle and a high-level

position controller for trajectory-following during descent and

landing. In our experimental platform, the low-level attitude

controller is designed by the UAV manufacturer, so our motion

control design is focused on the high-level position controller.

We first define the descent trajectory to accommodate

certain performance and safety requirements. We design the

descent of the UAV toward the landing platform to always

approach from the stern of the ship, assuming forward ship

motion at sea. In addition, the descent trajectory is designed

to provide the UAV camera with a continuous view of the

fiducial markers on the landing platform throughout the entire

landing event, despite the system being robust to interruptions

in view. Thus, the descent trajectory roughly follows a straight-

line path traced from the camera lens to the landing platform.

For best performance, the UAV should follow the planned

trajectory with minimal deviations, so as to maximize the

number of fiducial marker observations on the platform. To

do so, we use a pure pursuit path follower [18] which guides

the UAV along a line connecting waypoints in the planned

trajectory.

To execute the landing maneuver, the high-level position

controller employs proportional-integral-derivative (PID) feed-

back loops around x, y, z, and yaw error signals in the UAV

body-frame. Error signals are calculated by transforming the

next trajectory waypoint from the local frame (l) to the current

UAV body frame (v).

For added robustness, our system continually evaluates the

uncertainty surrounding the relative-pose from UAV to landing

platform and determines whether the confidence in the esti-

mate is high enough to perform a safe landing. We evaluate the

sixth-root of the determinant of Σxvs
as a measure of the total

uncertainty of the relative-pose [19] and compare this value to

a confidence threshold for landing. If the uncertainty reaches

above the threshold, the system instructs the state estimator

to marginalize out state vector elements corresponding to the

ship and re-initialize upon the next camera observation. The

UAV is also instructed to back off and re-attempt the landing

once the ship has been detected again and the confidence is

higher. This check adds a layer of robustness to the system to

prevent unsafe landing attempts.



6 NEEC RESEARCH: GPS-DENIED LANDING OF UAVS ON SHIPS

UAV

Image Processing

State Estimation

Images

Relative-pose

vs

IMU data

Relative-poseControl
commands

Motion Control Mission Manager

Low-Level Attitude
Controller

Waypoints

High-Level Position
Controller

Software Architecture

Fig. 5: The proposed system software architecture. Arrows between
processes represent LCM communications.

IV. SOFTWARE ARCHITECTURE

This section describes the software architecture of the

proposed system such that it enables organization of the overall

approach into the three modules outlined previously. Fig. 5

shows the layout of the software architecture.

1) Inter-Process Communication: Before we discuss the

specific processes that comprise the modules, we must first

identify the format and protocol for inter-process communi-

cation within the architecture. For message passing between

processes, we use LCM [20]. LCM is a publish/subscribe

message passing service that was specifically designed for

real-time applications in robotics and autonomy. It is robust,

language-independent, and facilitates the setup of a modular

software architecture, as it inherently creates message-passing

boundaries between processes and standardizes the message

format within the architecture.

LCM also features some built-in utilities that are beneficial

for software development and analysis, depicted in Fig. 6.

LCM Logger and LogPlayer allow recording and playing-

back LCM network traffic. LCM Spy is a tool for displaying

LCM messages in real-time. These utilities are handy when

debugging code, but are especially beneficial for development;

we are able to play-back log files of real-world sensor data

or outputs from certain software modules without actually

running the sensors or modules themselves.

2) Image Processing: Within the software architecture, the

image processing module is comprised of a camera driver and

the AprilTag fiducial marker detection system. This module di-

rectly interfaces to the camera onboard the UAV and publishes

an image stream from the camera and the resulting camera-

to-tag poses over LCM.

3) State Estimation: The state estimation module runs

the delayed-state extended Kalman filter and subscribes to

observations published directly from the UAV (in the case of

IMU data) and from the image processing module (for camera

observations). This module publishes the derived relative-pose

estimate of the ship with respect to the UAV.

4) Mission Manager: The mission manager is a high-level

decision-maker embedded within the motion control module

that serves as an interface to the motion controllers and guides

the UAV through the many stages of the autonomous landing

process. The mission manager subscribes to the relative-pose

xvs from the state estimator to calculate the descent trajec-

tory. As the UAV flies, the mission manager acts as a state

machine, cycling through phases of the descent and publishing

waypoints using the pure pursuit path follower. The mission

manager also governs the sending of commands for events like

engine shutdown after completing the landing. Each phase of

the descent can be encoded with operational or performance

requirements that correspond to the progress of the UAV as

it executes the landing maneuver. The confidence threshold

check, for example, is handled by the mission manager.

5) Motion Controllers: As stated previously, motion control

of the UAV is accomplished using two separate controllers

– one for attitude stabilization and one for position control.

Both controllers subscribe to the desired trajectory waypoints

published by the mission manager and the relative-pose vector

xvs published by the EKF. Only the attitude controller directly

commands the UAV’s motion, as the UAV moves by varying

its thrust on individual motors to obtain a desired orientation.

V. EXPERIMENTS AND RESULTS

We tested the proposed system by autonomously landing

a micro UAV on an unmanned ground vehicle (UGV). This

testbed serves as a proxy for a full-scale setup and is meant to

conceptually demonstrate the viability of the proposed system.

A. Robotic Platform

The micro UAV we used for experimental testing was a

Parrot AR.Drone [21]. The AR.Drone is a quadrotor helicopter

that features an internal micro-electro-mechanical system

(MEMS) IMU, ultrasonic altimeter, and forward-looking and

downward-looking cameras. We angled the forward-looking

camera 45◦ downward to provide a field of view that facilitated

landing on the UGV. Only the modified forward-looking

camera was used for landing platform detection.

The AR.Drone does not have any significant onboard pro-

cessing capability to host the software for the proposed system.

Instead, we used a laptop computer to run the system code

and stream commands to the UAV over a wireless connection.

The UAV streamed IMU data and camera images to the laptop

over this connection as well. (Note: streaming communications

are not meant to be included in the final system that runs

completely onboard the UAV, but are necessary here because

of limitations with our experimental setup.)

The UGV was a Segway RMP-200 [22] equipped with a

landing platform and four AprilTag markers – one large marker

for initial detection during the early phases of the descent, and

three smaller markers for fine pose control when completing

the landing maneuver (markers can be seen in Fig. 1). The

Segway itself had no communication to the AR.Drone or

laptop computer and was piloted via remote-control by a

human operator. The experimental platform is shown in Fig. 7.



7

Fig. 6: The left window shows the LCM Spy tool for monitoring LCM traffic passed between processes. In view are windows displaying the
real-time estimates (both mean and covariance) from the state estimator: xv , described by the ARDRONE NAV message, and xs, described
by the TARGET NAV message. The right window shows the LCM LogPlayer for playing back recorded LCM log events.

B. Test Scenarios and Results

1) Estimation Performance Testing: The first tests of the

proposed system were performed to assess the state estimation

framework. We flew the UAV and observed a stationary April-

Tag (representing the landing platform) in a lab environment.

The testing consisted of an extended period of flying the

vehicle without performing the landing maneuver with times

of both viewing and not viewing the AprilTag. Ground-truth

measurements of the UAV and AprilTag local-poses were

recorded using a Qualisys IR Motion Capture system running

in real-time at 100 Hz [23]. By simultaneously tracking the

UAV and landing platform with the Motion Capture system,

we quantified the performance of the EKF.

Error plots from the ground-truth tests are shown in Fig. 8.

Both the EKF and motion capture system track poses of the

UAV and landing platform with respect to local frames. To

align and compare the EKF to ground-truth, we extracted the

relative-pose from the UAV to the landing platform for each

measurement method via coordinate transform operations. For

the entire test shown in Fig. 8, including periods without

camera observations, we recorded relative-position RMS errors

of 14.4 cm, 17.6 cm, and 4.6 cm for x, y, and z respectively,

and relative-orientation RMS errors under 2.5◦ for all angles.

Fig. 8 shows the growth of the relative-pose covariance when

AprilTag detections were lost. However, during times of

Fig. 7: (Left) The AR.Drone micro UAV sitting on the landing
platform atop the Segway RMP-200 UGV. (Right) The AR.Drone
during the descent phase of the landing maneuver. Photo: Laura
Rudich, Michigan Engineering Communications & Marketing

steady camera observations (i.e., when the AprilTag was in

continuous, uninterrupted view) the relative-pose uncertainty

was significantly lower.

To better understand the behavior of the estimator, we

calculated the RV coefficient [25] to measure the correlation

between the UAV and landing platform local-poses. The RV

coefficient for random vectors is analogous to the Pearson

correlation coefficient for scalar random variables. For our 6-

DOF local-pose vectors, the RV coefficient is found by

RV (xlv,xls) =
tr(Σxlvxls

Σxlsxlv
)

√

tr(Σxlv

2)tr(Σxls

2)
(32)

and is plotted in Fig. 9. Since the camera observations relate

both local-poses, correlation builds with each detection. With-

out detections, the local-poses lose correlation as the process

model propagates each system (UAV and ship) according to

its individual dynamics.

Also displayed in Fig. 9 is a plot of the normalized esti-

mation error squared (NEES), used as an evaluation of filter

consistency [24]. The NEES measures whether the observed

filter errors (compared to ground-truth) are representative of

the estimated filter covariance. We first derive the relative-pose

xvs ∼ N (µvs,Σxvs
) and calculate the NEES as the squared

Mahalanobis distance

NEES[k] = (xG[k]− µvs[k])
⊤Σ−1

xvs
[k](xG[k]− µvs[k])

(33)

where xG[k] denotes the ground-truth measurement of the

relative-pose at the current timestep k from the motion capture

system. Under the Gaussian assumption for xvs, the NEES is

distributed as a chi-square random variable with six degrees

of freedom, so we can plot its values during our ground-truth

tests with a corresponding acceptance interval, taken in Fig. 9

to be the double-sided 95% probability region.

2) Landing Events: We then proceeded to test the operation

of the full autonomous system with landing. Before including

the UGV in the experimental tests, the system was tested many

times with the landing platform off the UGV and placed in an

elevated, stationary position. The landing platform was then

attached to the UGV for testing the landing while the UGV



8 NEEC RESEARCH: GPS-DENIED LANDING OF UAVS ON SHIPS

X
 (

m
)

Relative−Pose Error from UAV to Landing Platform

0 20 40 60 80 100

−2

0

2
Y

 (
m

)

0 20 40 60 80 100

−2

0

2

Z
 (

m
)

Time (s)

0 20 40 60 80 100

−0.2

0

0.2

R
 (

d
e

g
)

Relative−Pose Error from UAV to Landing Platform

0 20 40 60 80 100
−10

0

10

P
 (

d
e

g
)

0 20 40 60 80 100
−10

0

10

H
 (

d
e

g
)

Time (s)

0 20 40 60 80 100

−40

−20

0

20

40

Fig. 8: Error plots from the ground-truth experiment for assessing estimation performance. Errors for the 6-DOF relative-pose from UAV
to landing platform are drawn in black with associated 3-σ intervals drawn in blue. Light red lines represent timestamps where a camera
observation was received. Notice the uncertainty growth during periods without camera observations; while uncertainty grows during these
periods, our filtering framework allows relative-pose errors to remain small.

Time (s)

Normalized Estimation Error Squared

 

 

0 20 40 60 80 100
0

5

10

15

20

25

30

NEES

Double−Sided 95% Chi−Sq Bounds

Correlation between UAV Pose and Landing Platform Pose

Time (s)

R
V

 C
o
e
ff
ic

ie
n
t

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9: (Left) The RV coefficient as a measure of correlation between the estimated UAV and landing platform local-poses during the
ground-truth experiment. Light red lines represent timestamps where a camera observation was received. The poses become highly correlated
when camera observations are incorporated into the state estimator, and lose correlation during periods without camera observations. (Right)
Plot of normalized estimation error squared (NEES) as a measure of estimator consistency with corresponding double-sided 95% chi-square
probability region [24].

traveled along a long, straight path. Photos of the experimental

testbed in action are shown in Fig. 7.

Results are shown in Fig. 10 for a typical autonomous

landing maneuver. The figure displays the estimated local-

frame positions from the EKF for the UAV and landing

platform, as well as the relative-position from UAV to landing

platform with associated 3-σ bounds. In this test, the UAV took

off from atop the UGV at the 7-second mark and performed

a short search for the landing platform (by spinning in place),

which it detected and initialized in the EKF at 9 seconds.

As the UGV travelled down its path, the UAV followed

from behind before beginning descent around 32 seconds

and landing at the 37-second mark. Fig. 10 and Fig. 11 both

show that the state estimate became more confident as the

UAV approached closer to landing. This rise in confidence

can be attributed to the additional detections from the small

markers on the landing platform intended for fine pose control.

Fig. 11 shows that the relative-pose uncertainty, measured by

the sixth-root of the determinant of the covariance, shrinks

to less than half its value with the additional small-marker

observations. A video of the system in operation can be found

at http://www.youtube.com/watch?v=7KxGFSiPLYs.

VI. TOOLS FOR TEACHING, TRAINING, AND LEARNING

As mentioned previously, a major goal of this project and

the NEEC is not only to perform research, but to educate

and train young engineers in Navy-relevant autonomy. The

focus on project-based education allows us to emphasize

interdisciplinary collaboration and hands-on experience within

our student team. A recent University of Michigan report notes



9

X
 (

m
)

Local−Pose Estimates

 

 

0 5 10 15 20 25 30 35 40
−10

−5

0

UAV x
lv

Landing Platform x
ls

Y
 (

m
)

0 5 10 15 20 25 30 35 40

0

5

10

Z
 (

m
)

Time (s)

0 5 10 15 20 25 30 35 40

−3

−2

−1

0

X
 (

m
)

Relative−Pose from UAV to Landing Platform x
vs

10 15 20 25 30 35 40
−1

0

1

2

3

4

Y
 (

m
)

10 15 20 25 30 35 40
−2

−1

0

1

2

Z
 (

m
)

Time (s)

 

 

10 15 20 25 30 35 40

0

0.5

1

1.5

2

Relative−Pose

3−sigma

Fig. 10: Plots of relevant information for an actual in-transit landing event performed by the experimental UAV and UGV. The UAV takes
off at 7 seconds and receives its first camera observation at 9 seconds, initializing the landing platform. The landing is accomplished at the
37-second mark. (Left) The UAV and landing platform positions with respect to the local NED frame, as estimated by the EKF during the
landing maneuver. (Right) The relative-position from UAV to landing platform with associated 3-σ confidence bounds.

that this type of experiential learning is preferable to future

employers, as it significantly enhances the ability of a student

to connect classroom knowledge with professional practice

[26].

Fostering a learning environment on the project begins at

the team level, with a focus on experienced and older students

mentoring younger students and newcomers. Brakora et. al.

[26] state that successful mentoring within a team promotes

year-to-year continuity of a project and can parallel the

classroom curriculum. We also use the mentoring opportunity

within the team to develop leadership skills and encourage

collaboration. The team is composed of students across disci-

plines — mechanical engineering, electrical engineering, and

computer science — so collaboration also provides a method

for teaming individual specializations and skillsets to address

a problem.

This collaborative environment favors the modular software

architecture that we designed for the proposed system. Team

members can work in groups on a specific component of

the system software and use common LCM type definitions

for bridging communication between modules developed by

different groups. In this way, LCM not only serves as a nice

interface between processes, but provides transparency of the

entire software architecture so that team members can better

understand how the system operates as a whole.

VII. CONCLUSIONS

We presented a UAV system for autonomously landing on

the deck of a ship at sea. With the aid of only onboard

sensors and visual fiducial markers on the desired landing

platform, the system can autonomously track and perform

landing maneuvers onto a transiting ship. Our state estimator

provides robustness that is not offered by current visual-

servoing based methods. The addition of delayed-states in our

extended Kalman filter formulation allows us to circumvent is-

sues with image processing latency — increasing the reliability

of the system. It is essential for military UAVs to eliminate

their reliance on external signals such as GPS and UAV-to-

ship communications, and our system allows UAVs to safely

return without such added infrastructure.

To simplify the landing platform detection process, we

strategically placed AprilTag markers around the platform

to guide our autonomous UAV on a safe descent. In future

iterations, we expect that AprilTag markers will be replaced by

arbitrary images that can be learned by the image processing

unit, such as in Ferns classification [27].

Finally, of paramount importance is the fact that this project

was completed by a team of voluntary NEEC students. By

exposing undergraduate students to real-world Navy problems

at an early stage in their engineering career, we are preparing

them to tackle even more difficult challenges in future naval

applications.

VIII. ACKNOWLEDGMENTS

The authors would like to thank the NEEC team of students

for their hard work in supporting the project: Jeffrey Chang,

Nicholas Fredricks, Michelle Howard, Timothy Jones, Noah

Katzman, and Angelo Wong. We would also like to acknowl-

edge our Navy POCs: Frank Ferrese at NAVSSES, Paul Young

at NSWC-DD, and Roger Anderson at NSWC-PCD.

REFERENCES

[1] “The Navy Unmanned Undersea Vehicle (UUV) Master Plan,” U.S.
Navy, Tech. Rep., November 2004.

[2] “The Navy Unmanned Surface Vehicle (USV) Master Plan,” U.S. Navy,
Tech. Rep., July 2007.

[3] J. Paur, “Can killer drones land on carri-
ers like human top guns?” November 2009. [On-
line]. Available: http://www.wired.com/dangerroom/2009/11/can-killer-
drones-land-on-carriers-like-human-top-guns/



10 NEEC RESEARCH: GPS-DENIED LANDING OF UAVS ON SHIPS

Correlation between UAV and

Landing Platform Poses

R
V

 C
o
e
ff
ic

ie
n
t

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uncertainty of Relative−Pose

d
e
t(

C
o
v
)1

/6
 (

m
−

ra
d
)

5 10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Number of Marker Detections

Time (s)
5 10 15 20 25 30 35 40

0

1

2

3

4

Fig. 11: (Top) The RV coefficient as a measure of correlation between
the UAV and landing platform local-poses. Correlation builds as
camera observations to the platform are incorporated by the state
estimator. Landing occurs at the 37-second mark. (Middle) The
uncertainty of the relative-pose from UAV to landing platform, taken
as the sixth-root of the determinant of the covariance of the relative-
pose [19]. Detections of the small markers cause the uncertainty
to shrink quickly immediately before the landing. (Bottom) The
number of marker detections during the landing event. As the UAV
approaches close to the platform right before landing, the three small
markers come into view, causing an increased number of observations
beneficial for fine pose control.

[4] L. Coutard, F. Chaumette, and J.-M. Pflimlin, “Automatic landing on
aircraft carrier by visual servoing,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
September 2011, pp. 2843–2848.

[5] Sierra Nevada Corporation, “Firescout lands at sea using
SNC’s UCARS-V2!” January 2006. [Online]. Available:
http://www.sncorp.com/pdfs/SNC news/Firescout%20Press%20Release.pdf

[6] J. Kelly, “Unmanned X-47B readies for final touchdown,” July 2013.
[Online]. Available: http://navylive.dodlive.mil/2013/07/09/unmanned-
x-47b-readies-for-final-touchdown/

[7] S. Ackerman, “Exclusive pics: The Navy’s unmanned,
autonomous UFO,” July 2012. [Online]. Available:
http://www.wired.com/dangerroom/2012/07/x47b

[8] S.-R. Oh, K. Pathak, S. K. Agrawal, H. R. Pota, and M. Garratt,
“Autonomous helicopter landing on a moving platform using a tether,” in
Robotics and Automation (ICRA), 2005 IEEE International Conference
on, 2005, pp. 3960–3965.

[9] M. Garratt, H. Pota, A. Lambert, S. Eckersley-Maslin, and C. Farabet,
“Visual tracking and LIDAR relative positioning for automated launch
and recovery of an unmanned rotorcraft from ships at sea,” Naval
Engineers Journal (NEJ), vol. 122, no. 2, pp. 99–110, 2009.

[10] B. Herisse, T. Hamel, R. Mahony, and F.-X. Russotto, “Landing a VTOL
unmanned aerial vehicle on a moving platform using optical flow,” IEEE
Transaction on Robotics, vol. 28, no. 1, pp. 77–89, February 2012.

[11] S. Arora, S. Jain, S. Scherer, S. Nuske, L. Chamberlain, and S. Singh,
“Infrastructure-free shipdeck tracking and autonomous landing,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, 2013, pp. 323–330.

[12] T. S. Richardson, C. G. Jones, A. Likhoded, E. Sparks, A. Jordan,
I. Cowling, and S. Wilcox, “Automated vision-based recovery of a rotary
wing unmanned aerial vehicle onto a moving platform,” Journal of Field
Robotics, vol. 30, no. 5, pp. 667–684, 2013.

[13] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” Autonomous Robot Vehicles, vol. 1, pp. 167–
193, 1990.

[14] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), May 2011, pp. 3400–3407.

[15] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2003.

[16] J. J. Leonard and R. Rikoski, “Incorporation of delayed decision making
into stochastic mapping,” in Experimental Robotics VII, ser. Lecture
Notes in Control and Information Sciences, D. Rus and S. Singh, Eds.
Springer-Verlag, 2001.

[17] R. F. Stengel, Optimal Control and Estimation. Dover, 1994.
[18] R. C. Coulter, “Implementation of the pure pursuit path tracking algo-

rithm,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-92-
01, January 1992.

[19] H. Carrillo, I. Reid, and J. Castellanos, “On the comparison of uncer-
tainty criteria for active SLAM,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, 2012, pp. 2080–2087.

[20] A. Huang, E. Olson, and D. Moore, “LCM: Lightweight communica-
tions and marshalling,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2010,
pp. 4057–4062.

[21] Parrot SA., “AR.Drone.” [Online]. Available: http://ardrone.parrot.com
[22] Segway Inc., “Segway RMP-200.” [Online]. Available:

http://rmp.segway.com
[23] Qualisys, “Qualisys ProReflex MCU 1000.” [Online]. Available:

http://www.qualisys.com
[24] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with

Applications to Tracking and Navigation: Theory, Algorithms, and
Software. Wiley, 2001.

[25] P. Robert and Y. Escoufier, “A unifying tool for linear
multivariate statistical methods: The RV-Coefficient,”
Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 25, no. 3, pp. 257–265, 1976.

[26] J. Brakora, B. Gilchrist, J. Holloway, N. Renno, S. Skerlos, T. Teory,
P. Washabaugh, and D. Weinert, “Integrating real-world experience
into a college curriculum using a multidisciplinary design minor,” in
116th Annual American Society of Engineering Education Conference
& Exposition, no. AC 2009-2282, June 2009.

[27] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint
recognition using random ferns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, pp. 448–461, 2010.


