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Abstract This paper reports on an active SLAM framework

for performing large-scale inspections with an underwater

robot. We propose a path planning algorithm integrated with

visual SLAM that plans loop-closure paths in order to de-

crease navigation uncertainty. While loop-closing revisit ac-

tions bound the robot’s uncertainty, they also lead to re-

dundant area coverage and increased path length. Our pro-

posed opportunistic framework leverages sampling-based

techniques and information filtering to plan revisit paths

that are coverage efficient. We employ Gaussian process

regression for modeling the prediction of camera registra-

tions and use a two-step optimization procedure for select-

ing revisit actions. We show that the proposed method of-

fers many benefits over existing solutions and good per-

formance for bounding navigation uncertainty in long-term

autonomous operations with hybrid simulation experiments

and real-world field trials performed by an underwater in-

spection robot.
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1 Introduction

Mobile robots operating autonomously in real-world envi-

ronments must fulfill three core competencies: localization,

mapping, and planning. Solutions to these problems are im-

portant in order to perform tasks like exploration, search

and rescue, inspection, reconnaissance, target-tracking, and

others. The core competencies of localization and mapping

have been well-studied in the past decades under the topic of

simultaneous localization and mapping (SLAM) (Durrant-

Whyte and Bailey 2006; Bailey and Durrant-Whyte 2006).

However, research toward integrating planning and SLAM

solutions to form an all-encompassing framework is still in

its early years. SLAM solutions are typically agnostic to the

path or control policy given to the robot. Likewise, plan-

ning algorithms assume that accurate localization is avail-

able and information about the environment is at least par-

tially known. Of course, real-world robots operate at the in-

tersection of these topics where assumptions about the avail-

able prior information are not always true, posing an inter-

esting challenge for robust autonomy.

Autonomy in marine environments can be especially dif-

ficult. Underwater robots commonly operate in GPS-denied

scenarios with limited communication, often over large un-

known areas with sparsely-distributed features. In these sit-

uations, the path taken by the robot through the environ-

ment can drastically affect the performance of SLAM. Thus,

real-world robotic systems demand a comprehensive, proba-

bilistic framework for integrated localization, mapping, and

planning.

In this paper, we focus on integrating path planning and

visual SLAM into a coupled solution, an area of research

termed active SLAM. Our objective is to provide a robust

framework for long-term autonomous inspection in under-

water environments. We consider a robot surveying an a

priori unknown target area subject to a desired navigation
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uncertainty threshold, defined as the maximum acceptable

robot pose covariance. The robot explores the target envi-

ronment following a nominal exploration policy—a strategy

that ensures efficient area coverage but leads to an open-

loop trajectory without loop-closures. Without closing loops

in the SLAM formulation, the robot accumulates navigation

error and its uncertainty grows unbounded. Hence, we pro-

pose an opportunistic active SLAM framework for guiding

the robot to make loop-closure revisit actions throughout the

mission. Specifically, our proposed method

1. employs Gaussian process (GP) regression for proba-

bilistic modeling of the predicted visual loop-closure

utility of unmapped areas,

2. combines sampling-based planning with information fil-

tering to efficiently search hundreds of revisit paths

through the environment for their expected utility, and

3. uses a two-step optimization process for selecting revisit

actions that yields an opportunistic active SLAM frame-

work.

An illustration of the proposed algorithm is given in Fig. 1.

Our method is opportunistic in that it trades off conve-

nience versus necessity; it does not wait until the uncertainty

threshold is reached when selecting revisit actions to close

loops in the SLAM formulation.

The remainder of the paper is organized as follows:

related work is presented in §2, followed by the problem

statement in §3. The proposed method for predicting vi-

sual saliency is detailed in §4. Revisit path evaluation is de-

scribed in §5 before explaining how the proposed algorithm

searches for candidate paths in §6. Finally, we validate the

proposed method using a hybrid simulation in §7 and real-

world field trials with an underwater inspection robot in §8.

Concluding remarks are given in §9. An earlier version of

this work was presented by Chaves et al (2014). Extending

the previous work, we present (i) a more detailed description

and an updated implementation of the framework and (ii) re-

sults from real-world field trials of the system that validate

our approach. The field trials were performed in a controlled

laboratory environment at the University of Michigan’s Ma-

rine Hydrodynamics Laboratory (MHL) and while inspect-

ing the hull of the USCGC Escanaba in Boston, MA.

2 Related Work

Research in the area of active SLAM stems from the semi-

nal works of Bajcsy (1988), Whaite and Ferrie (1997), and

Feder et al (1999) and generally focuses on finding control

actions to reduce the uncertainty or maximize the informa-

tion of the SLAM posterior. Sim and Roy (2005) did not

include a measure of path length in the objective function,

only optimizing the trace of the SLAM covariance matrix.

Others included path length by focusing on reducing un-

certainty while performing efficient exploration (Gonzalez-

Banos and Latombe 2002; Bourgault et al 2002; Stachniss

et al 2005). Our formulation is similar in that we minimize

an objective that considers both path length and robot navi-

gation uncertainty, but we additionally consider the stochas-

ticity of expected camera measurements when evaluating the

utility of a loop-closure path. Valencia et al (2011, 2012,

2013) presented an active SLAM framework that is close

to our own in that they use information filtering to evalu-

ate the uncertainty of revisit actions on a pose-graph; how-

ever, their formulation only enumerates a small number of

possible options when deciding the best action. In contrast,

we leverage sampling-based planning to quickly explore the

configuration space of the robot with hundreds of candidate

revisit paths. In the context of bathymetric mapping, Gal-

ceran et al (2013) proposed a survey planning method that

minimizes an autonomous underwater vehicle (AUV)’s pose

uncertainty during the mission by revisiting salient locations

in the environment, while accounting for coverage efficiency

and meeting the application constraint of performing the sur-

vey in parallel tracks. However, their method is targeted at

the particulars of bathymetric surveys and is not integrated

with a SLAM framework. We are also unable to modify the

execution order of parallel tracks in the nominal exploration

policy due to operational constraints with our robot.

Sampling-based planning originates from traditional

motion planners like the Rapidly-exploring Random Tree

(RRT) (LaValle and Kuffner 2001) and Probabilistic

Roadmap (PRM) (Kavraki et al 1996), but was only recently

extended to include a notion of uncertainty during the plan-

ning process (Prentice and Roy 2009). Karaman and Fraz-

zoli (2011) proposed the Rapidly-exploring Random Graph

(RRG) and RRT*—adaptations of the RRT that incremen-

tally improve the shortest-distance path toward the goal with

guarantees of optimality in the limit. Bry and Roy (2011)

extended the RRG further to include stochasticity of mea-

surements and robot dynamics, a formulation generalized by

Hollinger and Sukhatme (2014) to accomplish information

gathering. We take a similar approach and adopt the use of

the RRG, but present a proposed algorithm integrated with

SLAM.

Recently, a substantial body of promising work has used

optimal control techniques and trajectory smoothing for

handling robot uncertainty during point-to-point planning

queries (van den Berg et al 2012; Indelman et al 2015; Patil

et al 2014). These methods result in locally-optimal solu-

tions but have yet to be extended to account for area cover-

age and more challenging real-world robotic systems.

In order to predict the likelihood of making camera mea-

surements over unmapped areas, we use GP regression and

visual saliency to model the loop-closure utility of the en-

vironment (Rasmussen and Williams 2006). Recently, GPs



Opportunistic sampling-based active visual SLAM for underwater inspection 3

nominal 
exploration policy

target area
Gaussian process
for saliency prediction

sampling-based
planning framework

selected
best revisit path

robot pose salient

non-salient

Fig. 1 Overview of the proposed active SLAM framework, demonstrated for ship hull inspection. Given a target area and nominal exploration

policy, the robot explores the environment subject to an acceptable navigation uncertainty. We use GP regression to predict the visual saliency

of the environment and a sampling-based planning algorithm to find and evaluate loop-closure revisit paths in order to drive down the robot’s

uncertainty.

have been widely used in learning spatial distributions and

predicting sensor data. O’Callaghan and Ramos (2012) ac-

curately predict an occupancy map using a GP with a trained

neural network kernel, despite dealing with noisy and sparse

sensor information. Within marine environments, Barkby

et al (2011) used a GP to predict bathymetric data in un-

mapped patches in order to perform SLAM without any ac-

tual sensor overlap. They achieve tractable prediction with

the GP over a large dataset by using a sparse covariance

function (Melkumyan and Ramos 2009).

Much of the work in this paper builds upon the

perception-driven navigation (PDN) method for active vi-

sual SLAM presented by Kim and Eustice (2015). The PDN

approach considers the same problem formulation, however

it plans revisit paths by clustering visually salient nodes

in the SLAM pose-graph to form waypoints, planning a

saliency-weighted direct path to each waypoint, and com-

puting a reward for revisiting along each path. In contrast,

the proposed algorithm reported here improves upon this

method by removing the need for clustering while eval-

uating many more paths using sampling-based planning

techniques. In addition, instead of the simple interpolation

scheme used by PDN, we predict the visual saliency along

paths with a more principled approach based upon GP re-

gression. Our algorithm is also opportunistic, unlike PDN, in

that it does not wait until the uncertainty threshold is reached

to execute a beneficial revisit action.

3 Problem Formulation

We consider a robot performing pose-graph SLAM to sur-

vey an a priori unknown environment, subject to a desired

uncertainty threshold. We are interested in performing large-

scale underwater inspections such that the inspection quality

is coupled to the value of the uncertainty threshold. Our pri-

mary application is ship hull inspection with a Hovering Au-

tonomous Underwater Vehicle (HAUV) (Hover et al 2012),

where the overall goal is to produce a metrically-accurate

map of the underwater portion of a ship. Since the HAUV

moves slowly and has control authority along all three prin-

cipal axes and in heading, we assume holonomic kinematic

constraints and no adverse effects from abrupt changes in

direction. The robot is equipped with proprioceptive sen-

sors to perform dead-reckoning and exteroceptive sensors

for perception, which define the robot’s ability to survey

the environment and gather loop-closure measurements. The

HAUV uses a Doppler velocity log (DVL) and depth sensor

for dead-reckoning and is equipped with an underwater cam-

era and imaging sonar for capturing images. These sensors

are positioned on an actuated tray on the robot that rotates

to always point normal to the inspection surface. Ranges

from the DVL allow the robot to maintain a uniform standoff

over the ship hull. While we showcase surveys in this paper

for dense sonar coverage, we use camera images to close

loops between poses in the SLAM formulation by making

registrations between overlapping images (via a homogra-

phy mapping or the Essential matrix). For ease of incorpo-

ration into our existing SLAM system, we adopt the incre-

mental smoothing and mapping (iSAM) algorithm by Kaess

et al (2008, 2013) as the SLAM back-end for our pose-

graph. iSAM performs nonlinear inference over the factor

graph containing constraints from odometry and camera im-

age registrations (Hover et al 2012). The resulting estimate

of the pose-graph can be represented as a multivariate Gaus-

sian with mean vector of 6-degree of freedom (DOF) poses,

µslam, and posterior information matrix, Λslam.

The inspection problem is then formulated with the fol-

lowing assumptions:

1. The boundaries of the target coverage area are given.

2. An open-loop nominal exploration policy provides

dense coverage of the target area in efficient time (lawn-

mower tracklines for sonar coverage with the HAUV).
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Fig. 2 Representative sample images captured on the below-water portion of the SS Curtiss’ ship hull. The underwater feature distribution is

highly diverse, ranging from feature-less (B,C) to feature-rich (A,D) images. The robot poses along the trajectory are color-coded by their local

saliency score, SL.

3. The user defines a desired navigation uncertainty thresh-

old as a function of the robot pose covariance.

4. The environment is free of obstacles and the inspection

surface is locally planar. The effects of water current and

turbidity are assumed to be negligible.

5. No other prior information is provided. Planning is per-

formed online in conjunction with SLAM.

Considering these assumptions, the goal of our proposed ac-

tive SLAM algorithm is to find and execute loop-closure

revisit actions throughout the mission in order to bound

navigation uncertainty and maintain efficient area cover-

age. Without this type of active SLAM system, the inspec-

tion task suffers from growing navigation uncertainty over

long durations. In these cases of long open-loop behavior,

modeling inaccuracies in the SLAM system cause the robot

to risk losing localization, leading to data association dif-

ficulties when proposing loop-closures. With a lost robot,

even appearance-based approaches for finding loop-closures

consistently fail in the underwater environment (Ozog et al

2015). Thus, we adopt an incremental approach where mul-

tiple loop-closure actions are necessary and we can guaran-

tee an acceptable inspection quality by bounding the naviga-

tion uncertainty throughout the mission. We must integrate

planning into the SLAM system to allow for long-term au-

tonomy in this marine application.

The next two sections explain mathematical details per-

taining to visual saliency prediction and revisit path evalu-

ation, respectively. Then, we describe algorithmically how

the proposed method finds candidate revisit paths in §6.

4 Visual Saliency Prediction

The utility of a revisit path in our active SLAM formula-

tion is defined by its ability to reduce navigation uncertainty,

and thus heavily depends on the expected loop-closures. To

gather loop-closures in our visual SLAM formulation, the

robot must execute revisit paths that re-observe previously-

seen portions of the environment. However, feature-richness

in underwater environments is highly sporadic and images

acquired by the robot typically have a variable degree of reg-

istrability. As shown in the sample images in Fig. 2, good

underwater visual features tend to be sparsely distributed,

such that much of the environment has little utility for clos-

ing loops, or even none at all.

To aid in estimating the likelihood of successful registra-

tions, we adopt the visual saliency metrics defined by Kim

and Eustice (2013), including local saliency (SL). The lo-

cal saliency score is computed using the entropy of a bag-

of-words (BoW) histogram from a vocabulary built online

and takes on values ranging from 0 to 1 (non-salient to very

salient). This score describes the texture-richness of an im-

age and directly correlates to its registrability. The saliency

score can only be calculated for images actually captured by

the robot, and must be predicted for virtual poses along not-

yet-traveled revisit paths. Thus, estimating successful regis-

trations hinges on accurate saliency prediction.

Previously, PDN used a simple interpolation scheme for

predicting saliency scores throughout an unmapped area.

However, this method has no notion of whether the predicted

score is accurate, and failure to accurately predict can lead to

planned revisit actions that greatly overestimate their actual

utility. Instead, here, we handle saliency prediction using GP

regression—a more principled approach that accounts for

the spatial distribution of visual features and yields distri-

butions of the saliency values to include in the planning for-

mulation. The variance of the prediction provided by the GP

serves as a measure of accuracy for the predicted saliency

score, and is accounted for during path evaluation (described

later). More information on GP regression for learning can

be found in Rasmussen and Williams (2006).
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(i) (ii) (iii)

(a) Predicted saliency maps throughout a mission from GP regression (b) Actual saliency map

Fig. 3 (a) Predicted saliency maps from GP regression at different points during an example mission: (i) after 25% coverage with the nominal

mission policy, (ii) 50% coverage, and (iii) 75% coverage. The training data is shown along the top row, with predicted saliency maps along the

bottom row. (b) The actual saliency map of the environment, for comparison.
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Fig. 4 (a) The predicted saliency map from the GP along a sampled trajectory. The ‘X’ indicates the current robot location while gray dots

represent the historical poses of the robot for training the GP. The predicted saliency scores are color-coded with respect to their saliency level. (b)

Predicted mean saliency values with variance, overlaid on the true saliency scores. We intentionally excluded interpolated results in order to clearly

present how the predicted covariance envelope captures the true value. (c) A zoomed view for predictions between past tracklines. Two dotted blue

lines indicate the 3-σ envelope of the prediction. Red circles are the true saliency scores and green diamonds are the interpolated prediction used

by PDN.

4.1 Saliency Prediction using Gaussian Process Regression

The objective of using GP regression is to probabilistically

handle expected camera registrations over unmapped areas.

As the robot follows the nominal exploration policy, we train

the GP using the captured images in association with their

3D capture locations. The training data D = {X,y} is com-

posed of the 3D positions of the robot at the n capture times,

X = {Xi}
n
i=1 = {xi,yi,zi}

n
i=1, and the local saliency scores of

the n images, y = {SLi
}n

i=1. Similar to Barkby et al (2011),

we use a simple stationary covariance function suitable for

large scale data (Melkumyan and Ramos 2009):

k(X ,X ′; l,σ0) =
{

σ0

(

2+cos(2πd/l)
3

(1− d
l
)+ sin(2πd/l)

2π

)

, ifd < l

0, otherwise.

(1)

This covariance function achieves sparsity and scalability by

truncating values for training pairs that exceed the weighted

distance d = |X −X ′|W = [(X −X ′)⊤W (X −X ′)]1/2. For our

application, we align the coordinate frame with the survey

area and choose W = diag(1/∆ 2
d ,1/∆ 2

h ,1). Here, ∆d is the

distance between two along-track SLAM poses associated

with the nominal exploration policy and ∆h is the distance

between two cross-track SLAM poses.

The GP prediction performance over unmapped areas is

shown in Fig. 3. The top row of Fig. 3(a) depicts the pose-

graph of the robot at various points throughout a mission

while following the nominal exploration policy. The bottom

row of Fig. 3(a) shows dense coverage of saliency predic-

tions from the GP both in the future—throughout the re-

maining survey area, and in the past—in unmapped areas be-

tween previously-traveled tracklines. Fig. 4 shows the mean
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and variance from GP prediction along a sampled trajec-

tory, considering the robot already surveyed five full track-

lines. Fig. 4(b) shows that the variance increases as the pre-

dictions transition to farther-out areas not yet reached by

the robot. Between past tracklines, the saliency prediction

closely matches the actual value with small variance, shown

closer in Fig. 4(c). This zoomed view also compares the GP

prediction to the linear interpolation scheme from PDN in

predicting mean values; however, the true strength of using

the GP is in the measure of variance it also provides.

Together, the predicted mean and variance characterize

a Gaussian probability density function (pdf) of the saliency

score of a not-yet-seen image at the queried pose. Now that

we have a probabilistic method for modeling the saliency

throughout the environment, we focus on evaluating the util-

ity of a candidate revisit path.

5 Revisit Path Evaluation

For every candidate revisit path, P , we use a linearized

snapshot of the SLAM system to construct a delayed-state

extended information filter (EIF) (Eustice et al 2006a) that

tracks the posterior distribution of the path with informa-

tion Λpath. The posterior information is the sum of the prior

SLAM information, Λslam, and sources of delta informa-

tion corresponding to the the expected odometry and cam-

era registrations available along the round-trip path. In this

way, a candidate revisit path is distributed as a multivari-

ate Gaussian parameterized by a mean vector of both real

(SLAM) and virtual (revisit path) poses, µpath = µslam ∪

{xv0
, · · · ,xvp−1

}, and the posterior information, given by

Λpath = Λslam+Λodo+Λcam. (2)

A toy example of how the information is summed along

a path is given in Fig. 5. Our method assumes maximum-

likelihood measurements that occur at the mean of the dis-

tribution, allowing for the incorporation of expected mea-

surements within the EIF without relinearization.

An odometry measurement, xvi,vi+1
, is the relative-pose

increment between sequential virtual poses in the path,

(xvi
,xvi+1

) ∈ P (Smith et al 1990):

xvi+1
= xvi

⊕xvi,vi+1
. (3)

Adding the expected odometry measurements along the path

results in block-tridiagonal delta information given by

Λodo =
p−1

∑
i=0

H⊤
odoi,i+1

Q−1
odoi,i+1

Hodoi,i+1
, (4)

where Hodoi,i+1
is the sparse Jacobian and Qodoi,i+1

is the

noise of the odometry model.

The delta information from expected camera registra-

tions along a path has a similar expression, but requires more

care. We adopt the “link proposal” method from Kim and

Eustice (2013) for proposing camera registration hypothe-

ses between a virtual pose on a revisit path and nplink exist-

ing target poses in the SLAM pose-graph that may contain

spatially-overlapping image views. For each link hypothe-

sis, we can compute its probability of successful registra-

tion, PL, using the GP prediction and the knowledge of past

registration attempts. We aggregate historical camera regis-

tration data to produce an empirical probability of successful

registration as a function of target pose saliency and virtual

pose saliency for overlapping pairs, g(SLt ,SLv), shown in

Fig. 6 and described further by Kim and Eustice (2013). The

GP prediction returns a distribution of virtual pose saliency

scores at the queried pose with pdf f (SLv), which we trans-

form into the censored pdf f ′(SLv) (Hand 2008). The cen-

sored pdf ensures that the predicted saliency is correctly rep-

resented within the acceptable range of values from 0 to 1.

Then, the expected probability of the link is computed as

PL = E f ′ [g(SLt ,SLv)]

=
∫ 1

0
g(SLt ,SLv) f ′(SLv)dSLv .

(5)

The delta information corresponding to camera registrations

expected along a revisit path is then calculated by

Λcam =
p−1

∑
i=0

∑
t∈Li

PL ·H
⊤
camt,i

R−1Hcamt,i , (6)

where Hcamt,i is the camera measurement Jacobian (Kim and

Eustice 2013), R is the camera measurement noise (assumed

constant for convenience), and Li is the index set of cam-

era registrations associated with virtual pose xvi
. The infor-

mation of an expected camera registration is scaled by its

probability of success as a method for handling the stochas-

ticity of achieving the measurement in the prediction. This

information scaling was first practiced by Kim and Eustice

(2015), but Indelman et al (2015) formalized the intuition

by showing that scaling the information results from using

Expectation-Maximization as a way of estimating a latent

variable describing whether or not the measurement is ac-

quired. In the harsh marine environment where camera reg-

istrations are difficult to make, this information scaling is

essential to the prediction accuracy of the proposed method.

Given the posterior information, Λpath, the cost function

we use to determine the utility of a revisit path reflects the

planning tradeoff between navigation uncertainty and area

coverage. The planning objective is to minimize the cost of

a revisit path, computed by

C (P) = α ·
U (P)

Uupper

+(1−α) ·
d(P)

dupper
, (7)

where U (P) = s(Σnn) is a function of the terminating pose

covariance of the path and used as a measure of navigation
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Fig. 6 The empirical probability of the camera registration to be suc-

cessful, used in (5). The probability is a function of target node saliency

SLt and virtual node saliency SLv .

uncertainty. We express the covariance in the frame of the

initial robot pose, which is aligned with the frame of the

global origin. Either the A-optimal trace or the D-optimal

determinant can be used for s( ·) (Sim and Roy 2005). We

use s(Σnn) = |Σnn|
1
6 throughout the experiments in this pa-

per to yield a quantity with units of m-rad. The uncertainty

upper bound (Uupper) is specified by the user as the desired

threshold to be maintained during the exploration of new

areas throughout the mission. Note that our method does al-

low for the threshold to be exceeded during diversions from

exploration along revisit paths, provided the robot returns to

exploring with the nominal policy with bounded uncertainty.

d(P) is the revisit (redundant coverage) distance of the path

and dupper is the maximum revisit distance allowed by the

user. The tuning parameter α ∈ [0,1] controls the balance

between uncertainty and revisit distance.

Per Eustice et al (2006b), we recover the terminating co-

variance of a revisit path, Σnn, by

ΛpathΣ∗n = I∗n, (8)

where Σ∗n and I∗n are the nth block-columns of the covari-

ance matrix and block identity matrix, respectively. Since

the information matrix is exactly sparse for our visual

SLAM formulation, this calculation can be performed ef-

ficiently using sparse Cholesky factorization.

6 Planning Algorithm Description

We now discuss algorithmically how the proposed method

searches for candidate revisit paths, prunes paths that are not

promising, and selects which path to execute. We leverage

a sampling-based approach to quickly explore the configu-

ration space of the robot while evaluating candidate paths

using the formulation from §5. The planning algorithm is

described in detail below and outlined in Algorithm 1.

6.1 Graph Construction

The underlying structure for the path planner is the RRG

(Karaman and Frazzoli 2011; Bry and Roy 2011; Hollinger

and Sukhatme 2014), which incrementally builds a roadmap

of vertices and edges describing connectivity through the

configuration space of the robot. Contained at each vertex in

the RRG is a list of partial candidate revisit paths (hereafter

called just candidates, denoted by Pi) that each describe a

unique trajectory over edges in the RRG to arrive at the ver-

tex. Every candidate at every vertex is tracked by the planner

and represented by its mean, µpath, and associated informa-

tion, Λpath, from (2). The virtual poses in the mean vec-

tor, {xv0
, · · · ,xvp−1

}, arise from traveling along edges, and

the information matrix Λpath is the sum of the SLAM infor-

mation, Λslam, and the delta information gathered along the

way. Fig. 7 displays an example RRG sampled on a typical

SLAM pose-graph built by the HAUV.

A benefit of using the information form to track candi-

dates is that each of the sources of delta information from

(2) can be divided into multiple components and attributed

to the edges from which they originate. In this way, the total

delta information for a candidate is simply the sum of the

delta information contributed by each edge that it travels.

Hence, (2) can be rewritten as

Λpath = Λslam+Λ 1
edge+ . . .+Λ k

edge, (9)

where

Λ i
edge = Λ i

odo+Λ i
cam, (10)
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Fig. 7 An example RRG sampled over a typical SLAM pose-graph

from a ship hull inspection. Black lines represent edges between ver-

tices in the RRG.

and Λ i
edge represents the delta information matrix encoded

by the odometry and camera registration factors arising from

the edge. A key insight is that the delta information Λ i
edge

only needs to be computed once during construction, and

is additively applied to a candidate’s information when the

edge is traversed. This benefit of the information form was

alluded to by Valencia et al (2013) and is analogous to

the one-step transfer function used by the Belief Roadmap

(BRM) (Prentice and Roy 2009). Edge construction is ac-

complished within the Connect() function of the proposed

algorithm.

6.2 Path Propagation and Pruning

As the RRG is built, the algorithm grows a tree of candi-

dates over the roadmap, where candidates can be thought

of as leaves of the tree. The root of the tree is initialized at

the most recent SLAM pose with initial information Λslam.

New leaves are generated by creating a new vertex from a

sampled pose in the configuration space (vnew), connecting

nearby vertices (Vnear) to the new vertex with new edges, and

propagating the candidates from the nearby vertices over the

new edges and recursively throughout the rest of the graph.

Propagating a candidate over an edge (and hence creating a

new leaf) amounts to branching the candidate (parent leaf)

from the edge source vertex, creating a new candidate (child

leaf) at the destination vertex, and calculating the child in-

formation by adding the delta information from the edge to

the parent leaf information. Without pruning leaves, the tree

encodes every possible path through the graph to reach any

vertex from the root.

However, the number of candidates tracked by the plan-

ner can quickly become too large for computational feasibil-

ity. It is logical to prune leaves of the tree that are not useful

given the objective. A conservative pruning strategy would

eliminate only suboptimal leaves from the tree (Bry and Roy

2011; Hollinger and Sukhatme 2014), but we are willing to

Algorithm 1 Opportunistic Path Planning Algorithm

Input: current pose x0, SLAM pose-graph, exploration policy

Output: best path P∗
Initialize: vertices V = {v0}, edges E = {}, queue Q = {}

for xl in look-ahead poses do

vnew = ExtendToNearest(xl)
while Q is not empty do

ProcessQueue()
end while

end for

ComputeMaxCost()
while computation time remains do

xsample = SamplePose()
vnew = ExtendToNearest(xsample)
Vnear = FindNearVertices(vnew)
for all vk in Vnear do

E = E ∪{Connect(vk,vnew),Connect(vnew,vk)}
Q = Q∪{all P at vk}

end for

while Q is not empty do

ProcessQueue()
end while

UpdateBestPath()
end while

Function: ExtendToNearest(xi)
vnearest = FindNearestVertex(xi)
vnew = SteerToward(xi,vnearest)
V =V ∪ vnew

E = E ∪{Connect(vnearest ,vnew),Connect(vnew,vnearest)}
Q = Q∪{all P at vnearest}
return vnew

Function: ProcessQueue()
Pparent = Pop(Q)
for all vneighbor of v(Pparent) do

Pchild = PropagatePath(eneighbor,Pparent)
if not PrunePath(vneighbor,Pchild) then

AddPathToVertex(vneighbor,Pchild)
Q = Q∪Pchild

end if

end for

employ a more aggressive heuristic that sacrifices optimal-

ity for a large increase in speed, as done by Hollinger and

Sukhatme (2014) for submodular objective functions. Thus,

we maintain a partial ordering of candidates at each vertex

according to the distance and uncertainty metrics of (7):

Pa > Pb ⇔ d(Pa)< d(Pb)∧U (Pa)< U (Pb)+ ε,

(11)

where ε is a small factor to aid in pruning when the candi-

dates are quite similar (Bry and Roy 2011). When (11) is

true, candidate Pb has both a longer revisit distance and a

higher uncertainty than Pa, so Pb can be pruned from the

vertex, as well as its children.
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6.3 Opportunistic Look-Ahead Planning

Our method provides online decision-making for the robot

by integrating the planning process with the visual SLAM

formulation. Selecting a revisit action is not triggered by

breaching the uncertainty threshold as in PDN (Kim and

Eustice 2015). Rather, the planner runs in conjunction with

SLAM and we design our framework to be opportunistic

in nature, such that the selection of a revisit action at any

point during the mission is based on a tradeoff between con-

venience and necessity. To this end, we develop a two-step

optimization to decide whether to continue the exploration

policy or divert to make loop-closures along a revisit path:

1. we predict the uncertainty along a look-ahead horizon to

determine the maximum cost of a revisit path the planner

should accept, and

2. we search for the candidate path with minimum cost less

than this upper bound.

The look-ahead horizon is composed of the next m robot

poses predicted from following the nominal exploration pol-

icy. We add the look-ahead poses as vertices in the RRG

and designate each as a valid goal point, such that the plan-

ner searches for candidates that divert from, and return to,

the nominal policy at any point along the horizon. (We used

m = 100 in the hybrid simulation experiments, correspond-

ing to a 20 m horizon. During field trials, the horizon cor-

responded to the length of an entire trackline.) Incorpora-

tion of the horizon gives the planner a sense of the expected

measurements and predicted uncertainty, Uexp, for explor-

ing with the nominal policy. We query the planner for Uexp

in order to compute the maximum acceptable cost for a can-

didate that diverts within the look-ahead horizon, given by

Cmax = β

(

Uexp
Uupper

−1
)

, (12)

where β is selected by the user. (We used β = 1000 in hybrid

simulation and β = 20 in field trials.) This exponential func-

tion yields a higher allowable cost as the uncertainty Uexp

increases (see Fig. 8). When the exploration uncertainty is

low, the planner is restrictive when choosing paths, only se-

lecting diversions if they are convenient and very benefi-

cial. When the exploration uncertainty is high, the planner

is willing to accept more costly revisit actions out of ne-

cessity. Instituting this upper bound on path cost is the first

step in the optimization, accomplished within the function

ComputeMaxCost().

From here, the algorithm proceeds with RRG construc-

tion and candidate path propagation to find candidates that

may divert from exploration at any point within the look-

ahead horizon. The second step in the optimization is the

search for the candidate with minimum cost below Cmax,

performed by the UpdateBestPath() function. If no revisit

not very restrictive: allows longer paths and/or
smaller expected drops in uncertainty
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restrictive: only allows shorter paths and/or
larger expected drops in uncertainty

Fig. 8 The curve from (12) with β = 1000, used to determine the max-

imum allowable cost of a candidate revisit path during the planning

process.

paths are found with cost below Cmax, the nominal explo-

ration action of traveling along the look-ahead steps is se-

lected.

Whenever a plan is executed and finished, either explor-

ing or revisiting, the algorithm begins again with a new plan

initialization and look-ahead horizon.

6.4 Parameter Discussion

The proposed method includes a number of tunable param-

eters to provide the user with finer control and aid in trans-

ferring the system to other applications and domains. We

discuss some of the more important parameters here.

The uncertainty threshold Uupper is a function of the

robot pose covariance. In this paper, it is set to a value that

illustrates sufficient performance of the system over the du-

ration of our experiments. In the future, however, we intend

for this threshold to be set according to a measure of the

resulting SLAM map quality. Note, though, that setting the

threshold too low can lead to losing the opportunistic nature

of the algorithm since there may be no freedom in selecting

continued exploration with each planning event.

The path cost tuning parameter α controls the prefer-

ence for choosing paths within each planning event. A value

of α near 1 means that paths with the most beneficial drops

in uncertainty are preferred over paths with shorter revisit

lengths. An α near 0 means that shorter diversions are pre-

ferred even if the uncertainty benefit is minimal. If the utility

of the environment allows, setting α near 1 generally causes

the robot to execute fewer, larger loop-closure actions that

drop the uncertainty well below the threshold. Setting α

near 0 causes the robot to gather many small loop-closures

to minimally satisfy the uncertainty constraint.

The parameter β defines the degree to which the algo-

rithm is opportunistic. Setting β = 1 provides a linear rela-
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tionship to govern acceptable loop-closure actions with re-

spect to the robot’s exploration uncertainty and the uncer-

tainty threshold. The opportunistic nature of the algorithm

decreases as the value of β is increased, such that a very

high β causes the robot to select revisit actions only when

the uncertainty threshold is reached. For our experiments,

we found that β ∈ [10,10000] reflected sensible opportunis-

tic behavior. Refer to Fig. 8 for more information on β .

6.5 Comments on Implementation

The computational complexity of the proposed algorithm

can be roughly attributed to three sources: construction of

the RRG, propagation of candidates throughout the RRG,

and the evaluation of the cost of candidates for pruning

and best path selection. The complexity of the construction

phase is well-documented (Karaman and Frazzoli 2011), al-

though we include the additional computation required to

predict the measurements available along each edge. Simi-

larly, Hollinger and Sukhatme (2014) present the complex-

ity of propagating candidates throughout the RRG, which

is exponential in the worst case but tractable for aggressive

pruning strategies like the one we propose. Evaluation of

the cost of a candidate using the Cholesky decomposition is

generally O(n3), where n is the dimension of the informa-

tion matrix, but lower with methods for sparse systems. A

helpful feature of the incremental sampling-based nature of

the algorithm is that it finds solutions quickly but searches

to improve the best path as computation time remains.

Below we describe some implementation techniques to

help reduce overall computation time, in addition to com-

mon methods like biasing the sampling toward salient re-

gions or adjusting parameters related to RRG connectivity

and pruning aggressiveness.

6.5.1 Edge Marginalization

When an edge is traversed during propagation, the size of

the candidate’s information matrix grows proportional to the

number of virtual poses added by the edge. For example, an

edge adding five 6-DOF virtual poses to a candidate path

adds five odometry factors to the pose-graph and grows the

candidate information matrix by 30 rows and columns. To

alleviate this growth and leverage the information form pa-

rameterization, we can use marginalization to significantly

reduce the dimensionality of the delta information of an

edge during its construction.

Consider the example edge shown in Fig. 9(a); rather

than explicitly representing all the factors along the edge,

we condense their combined delta information (Λ i
edge) into

a single n-ary factor by marginalizing out the intermedi-

ate poses in the edge (i.e., edge poses that are not the

source or destination). The single factor is represented by

A B

5 4 3 2 1 0

SLAM poses

sourcedestination

A B

5 0

A B 0 1 2 3 4 5

...

...

... ......

A B 0 5

...

...

... ......

MARGINALIZATION

(a) Edge construction with marginalization technique

Λ slam

Λ slam

Λmarg Λmarg

Λ path

...

...

... ......

...

...

... ......+ + ... + =

(b) Calculating path posterior information using marginalized

edges

Fig. 9 (a) The factor graph and delta information matrix arising from

an edge before (top, Λedge) and after marginalization (bottom, Λmarg)

during construction. (b) The algorithm builds the posterior information

incrementally from the sources of delta information arising from each

edge in the path. The marginalization technique reduces the complexity

of path evaluation within the algorithm.

the marginalized delta information, Λ i
marg, which replaces

Λ i
edge but induces the exact same information into the factor

graph. The marginalized delta information is found in the

usual way via the Schur complement,

Λ i
marg = Λ i

aa−Λ i
abΛ i

bb

−1
Λ i
ba, (13)

where a represents the source and destination poses (as well

as states from target poses corresponding to expected cam-

era registrations) and b represents intermediate poses on the

edge. This process is visualized in Fig. 9(a). Then, for im-

plementation, (9) takes the final form,

Λpath = Λslam+Λ 1
marg+ . . .+Λ k

marg. (14)

As a result of this marginalization, a candidate’s mean

and information are augmented by only one new virtual pose

upon traversing an edge, no matter how many virtual poses

it originally contained.

6.5.2 Parallel Evaluation

In our C++ implementation of the algorithm, propagation

and evaluation of a candidate path over an edge averages

33.2 ms for representative missions like those in §7 and §8.

Roughly 80% of this time is due to calculating the terminat-

ing covariance via Cholesky factorization of Λpath. We can

achieve significant speed-up by parallelizing evaluations of

candidates within ProcessQueue() by performing the nec-

essary Cholesky factorizations across multiple threads. For
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the USCGC Escanaba field trials presented in §8.2 that used

this parallel implementation, the equivalent timing for prop-

agation and evaluation of a candidate path was reduced to an

average of 9.0 ms.

7 Hybrid Simulation Results

We tested the proposed active SLAM framework both in a

hybrid simulation environment, presented here, and in real-

world field trials with the HAUV, presented in the next sec-

tion. The hybrid simulation incorporates real-world data col-

lected in field trials but simulates the path traveled by the

robot. In particular, the hybrid simulation presented here

uses data collected during a ship hull inspection of the SS

Curtiss by the HAUV in February 2011. More information

about this experimental setup and dataset can be found in

the work by Kim and Eustice (2015).

7.1 Synthetic Saliency Environment

The first simulation features real odometry and depth mea-

surements collected by the robot but uses synthetic imagery,

such that salient and non-salient portions of the environment

are assigned by the user. We compare the proposed active

SLAM method against three other methods: an open-loop

survey with no revisit actions, a preplanned deterministic

strategy with revisit actions along every trackline, and PDN

(Kim and Eustice 2015). The deterministic case is simulated

twice—over an optimistic salient region of the environment

and over a pessimistic non-salient region. In all scenarios,

the robot follows the same nominal exploration policy and

the compared planning methods determine when to make

diversions and which revisit paths to take.

Results from the synthetic saliency simulation are shown

in Fig. 10. While the path length of the deterministic method

is inherently long, its performance at bounding the uncer-

tainty of the robot is completely dependent upon whether

the preplanned revisit paths travel a salient region. As such,

we see its two extremes of the spectrum: a salient case

that serves as a good baseline for “best-possible” uncer-

tainty performance, and a non-salient case that underper-

forms even the open-loop survey. Considering the problem

formulation of operating in an a priori unknown environ-

ment, the selection of salient preplanned revisits and the per-

formance of this method are left completely up to chance.

PDN identifies salient areas of the environment online

and thus performs well regarding path length and uncer-

tainty. However, it is a naı̈ve framework that only enumer-

ates a few candidate revisit paths and simply waits until

the uncertainty threshold is breached before gathering loop-

closures. In contrast, the opportunistic nature and sampling-

based approach of the proposed method evaluates hundreds

Table 1 Summarized Results

METHOD PATH

LENGTH [m]

AVG. UNCERTAINTY

[% of Uupper]

HYBRID SIMULATION—SYNTHETIC SALIENCY

Open-loop 386.5 121.8
DET (non-sal) 885.2 151.7
DET (sal) 876.2 33.4
PDN 583.3 71.3
Proposed 524.5 42.5

HYBRID SIMULATION—REAL IMAGERY

Open-loop 386.5 121.8
DET 865.8 64.3
PDN 527.2 67.2
Proposed 557.3 53.7

MHL FIELD TRIAL 1

Open-loop 124.1 111.8
Proposed 233.1 61.0

MHL FIELD TRIAL 2

Open-loop 77.2 99.3
DET 271.3 199.3
Proposed 124.5 60.4

USCGC ESCANABA FIELD TRIAL 1

Open-loop 109.8 97.2
DET 203.9 55.3
Proposed 214.3 56.2

USCGC ESCANABA FIELD TRIAL 2

Open-loop 94.4 90.0
DET 163.0 67.3
Proposed 169.8 63.8

of candidate paths for revisiting at any point during the mis-

sion. As a result, the proposed method outperforms the de-

terministic and PDN methods in terms of path length and

results in uncertainty levels similar to the “best-possible”

deterministic case. Summarized statistics for the hybrid sim-

ulations (and all field trials) are presented in Table 1.

7.2 Real Image Data

Here we present results using the hybrid simulation with the

real imagery collected during the SS Curtiss inspection. Im-

ages from the dataset densely cover the entire target envi-

ronment, as shown in Fig. 2. We use the same nominal ex-

ploration policy as the previous simulation but instead use

the real camera images recorded by the robot to calculate

saliency scores and attempt loop-closure registrations. The

proposed algorithm is again compared to the open-loop, de-

terministic, and PDN methods. Like the previous simulation,

the deterministic strategy revisits along every trackline to a

preplanned pose. Results are presented in Fig. 11.

This time, the deterministic revisits travel portions of the

environment that yield some camera registrations, but none

that significantly drive down the uncertainty. PDN slightly

outperforms the proposed method in overall path length.

(Notice, though, that PDN is very close to triggering the ex-

ecution of a fourth revisit action at the end of the mission.)
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Fig. 10 Hybrid simulation results with the synthetic saliency environment. The non-salient deterministic strategy (a) (b) results in no loop-closures

and underperforms even the open-loop survey. Both PDN (c) (d) and the proposed method (e) (f) constrain the navigation uncertainty with loop-

closures throughout the mission. The uncertainty versus path length plots are shown in (g). SLAM poses in the trajectory plots are color-coded by

their visual saliency, from red (salient) to blue (non-salient). Visual loop-closures are represented by red links on the time elevation plots, where

the z-axis is scaled by time. Larger links close greater loops with respect to time elapsed.
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Fig. 11 Hybrid simulation results using real imagery collected by the HAUV while surveying the SS Curtiss. The deterministic strategy (a) (b)

results in an unnecessarily long path length. PDN (c) (d) results in the shortest path length but the proposed method (e) (f) yields the lowest average

uncertainty for the mission. The uncertainty versus path length plots are shown in (g). Visual loop-closures are represented by red links on the time

elevation plots, where the z-axis is scaled by time. Larger links close greater loops with respect to time elapsed.
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(a) HAUV (b) Physical modeling basin at MHL (c) USCGC Escanaba

Fig. 12 (a) The HAUV, developed by Bluefin Robotics, in the water before field testing. (b) The HAUV performing a seafloor survey in the

physical modeling basin at the University of Michigan’s Marine Hydrodynamics Laboratory. (c) The USCGC Escanaba, used for hull-relative

inspection field trials. Image from U.S. Coast Guard at coastguard.dodlive.mil.

Table 2 Parameters for Field Trials

MHL ESCANABA 1 ESCANABA 2

α 0.9 0.9 0.75

β 20 20 20

Uupper [m-rad] 4×10−5 6×10−5 6×10−5

dupper [m] 40 100 100

Still, the proposed method results in an average uncertainty

along the exploration trajectory that is 20% lower than the

PDN result with less than 6% increase in path length.

8 Real-World Field Trials

In addition to the hybrid simulations, we tested the proposed

framework in real-world field trials with the HAUV. We ap-

plied the framework to two different types of inspections

with the robot: seafloor surveys of a long, narrow basin, and

hull-relative surveys of a US Coast Guard cutter. Details of

these field trials are presented below and results are summa-

rized in Table 1. Table 2 reports the algorithm parameters

used in field testing. All parameters were selected to illus-

trate sufficient operation of the proposed method in the tar-

get environment.

8.1 MHL Seafloor Surveys

We used the HAUV and the proposed framework to survey

the floor of the physical modeling basin at the Marine Hy-

drodynamics Laboratory (MHL) at the University of Michi-

gan, seen in Fig. 12(b), in May 2014. The physical mod-

eling basin is over 100 m long, 6 m wide, and 3 m deep.

For seafloor surveys, the HAUV is configured with both

the DVL and underwater camera facing downward and a

nominal exploration policy similar to those for hull-relative

surveys—to cover the target area in an open-loop fashion

with back and forth tracklines. We performed these surveys
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Fig. 13 The experimental setup for the field trials at MHL. (a) The

open-loop trajectory resulting from following the nominal exploration

policy. (b) The environment saliency for the first set of trials. (c) The

environment saliency for the second set of trials.

with the HAUV operating just below the waterline and lim-

ited the target area to a (roughly) 15 m section of the basin.

Since the basin is a very salient environment, images ac-

quired almost anywhere are useful for making camera reg-

istrations. To increase the difficulty of making loop-closure

registrations and obtain scenarios that better illustrate the ap-

plicability of our approach, we blurred the imagery (with a

Gaussian blur) in some portions of the basin to degrade its

quality. Blurring occurred in specific areas of the basin ac-

cording to an independent estimate of the robot pose from an
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AprilTag fiducial marker (Olson 2011) observed through the

HAUV’s periscope camera. By controlling the image qual-

ity, we uniquely tailored the saliency of the environment for

two sets of field trials.

For the first set of trials at MHL, we blurred the imagery

in the environment in offsetting rectangular regions. This

resulted in alternating salient and non-salient areas of the

basin as seen in Fig. 13(b). We tested the proposed frame-

work against the open-loop nominal policy in this set of tri-

als, with results shown in the left column of Fig. 14. Some

small cross-track loop-closures are made during the open-

loop survey, but none that prevent the navigation uncertainty

from growing unbounded. The planning algorithm within

the proposed framework efficiently bounds the uncertainty

by selecting revisit paths that weave through the salient

patches of the environment and avoid non-salient patches.

The proposed method does result in an overall path length

nearly twice as long as the open-loop case, however.

The environment for the second set of field trials at MHL

consisted of a single salient band running lengthwise along

the edge of the basin, shown in Fig. 13(c). For this set of tri-

als, we compared the proposed framework against the open-

loop policy and a deterministic strategy with preplanned re-

visit actions along every other trackline. Once again, the pre-

planned actions travel a non-salient portion of the environ-

ment and the deterministic strategy performs poorly, with

large uncertainty growth and extremely long path length.

The time elevation graph of Fig. 14(b) shows zero large

loop-closing camera registrations. Contrastingly, the result-

ing trajectory from the proposed framework shows loop-

closures spread uniformly throughout the mission, as revisit

actions are performed within the salient portion of the envi-

ronment. Compared to the deterministic case, the proposed

method surveyed the target area with a 54% shorter path

length and 70% lower average navigation uncertainty. Even

if the deterministic strategy happened to travel the salient

portion of the basin, the path length would be equivalent to

the deterministic result shown. Refer to Table 1 for a sum-

mary of results.

8.2 USCGC Escanaba Hull-Relative Surveys

The proposed active SLAM framework was also tested

while inspecting the hull of the USCGC Escanaba in

Boston, MA in October 2014. The USCGC Escanaba

(WMEC-907) is 82 m in length with a beam of 12 m and

draft of 4.4 m. For hull-relative missions, the HAUV trav-

els along the underwater portion of the ship hull and actu-

ates the DVL and underwater camera such that they always

point normal to the hull surface. Two sets of experiments

were performed on a section of the hull situated between the

stabilizer fin and bow of the ship. Each set of trials included

surveys using the open-loop, deterministic, and proposed ac-

tive SLAM strategies.

Results from the first set of trials on the USCGC Es-

canaba are given in Fig. 15. The preplanned deterministic

strategy revisits a waypoint placed on the first trackline of

the mission through a salient patch along the hull. From the

time elevation graph in Fig. 15(d), it can be seen that the de-

terministic case relies on large loop-closures near the begin-

ning of the mission to bound the navigation uncertainty. The

proposed method yields a trajectory with loop-closures dis-

tributed throughout the salient portions of the environment.

Both strategies, however, produce favorable end results—

nearly identical average uncertainties well below the accept-

able threshold and path lengths within 11 m of each other.

The second set of field trials on the USCGC Escan-

aba were performed at a time of day when variable sun-

light penetrating the water affected the imagery collected by

the HAUV, specifically relating to the salient patch located

about 4 m deep. This variability is evidenced by the trajec-

tories and time elevation plots shown in Fig. 16 compared

with those in Fig. 15. Still, the deterministic and proposed

methods perform favorably with respect to uncertainty and

path length, shown in Fig. 16(j). In this set of trials, the pro-

posed method selects revisit actions solely along the deepest

portion of the environment, where the imagery is less af-

fected by sunlight but still possesses good loop-closure util-

ity. Here, the proposed method results in a slightly lower

average uncertainty than the deterministic method.

8.2.1 Performance of Planning Events

Here, we further investigate the planning algorithm within

the proposed framework. For the USCGC Escanaba field tri-

als, we report detailed performance statistics for each plan-

ning event in Table 3. The second and third columns of

this table report the number of candidate plans propagated

(the number of calls to PropagatePath() in Algorithm 1)

and the number of candidates processed, or popped off the

queue (calls to Pop(Q) in Algorithm 1), respectively. Tim-

ing statistics are reported in the fourth and fifth columns.

The fourth column displays the total time spent planning for

an event (triggered to exit after 20 s, upon completion of

the current iteration). In the fifth column, the timing results

for best path selection show that the sampling-based algo-

rithm often returns a viable solution quickly, and can use

any remaining time to search for improvements. The aver-

age time to find the selected best path is 2.992 s for these

events. Other statistics reported include the resulting action

and the predicted uncertainty of the selected best path. Re-

gardless of the resulting decision—following the nominal

exploration policy or diverting from this policy to gather

loop-closure registrations—the planning process relies upon
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Fig. 14 Results from field trials performed in the MHL physical modeling basin at the University of Michigan. Results pertaining to the first set

of trials are shown in the left column and the second set of trials in the right column. In the first set of trials, small cross-track camera registrations

are made during the open-loop survey (a), but none contribute to a large reduction in uncertainty. The proposed method (c) produces revisit paths

that weave through the salient patches in the environment. In the second set of trials, the deterministic strategy results in zero large loop-closures

as the preplanned revisit paths travel the non-salient portion of the environment. The proposed framework (d) results in visual loop-closures spread

throughout the mission. The uncertainty versus path length plots are shown in (e) and (f). Visual loop-closures are represented by red links on the

time elevation plots, where the z-axis is scaled by time. Larger links close greater loops with respect to time elapsed.

accurate prediction of the information expected along can-

didate paths.

Fig. 17 displays the results of the predictions from each

plan for the hull-relative field trials. The predicted path

length and uncertainty of the selected best path from each

planning event is overlaid on the actual data recorded. It

can be seen that the planner accurately predicts the perfor-

mance of the actual robot during the survey. These results

support the formulation for evaluating path utility presented

in §4 and §5. The statistics validate the method of using

GP regression for saliency prediction and scaling camera in-

formation in (6) to accurately capture the stochasticity of
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Fig. 15 Results from the first set of field trials performed while surveying the USCGC Escanaba in Boston, MA. The open-loop survey is shown in

(a) and (b). The deterministic strategy (c) (d) relies on large loop-closures near the beginning of the mission to bound the uncertainty. The proposed

method (e) (f) yields a trajectory with loop-closures throughout the salient portions of the environment. Sample images from the deterministic and

proposed strategies are displayed in (g), (h), and (i). The uncertainty versus path length plots are shown in (j). Visual loop-closures are represented

by red links on the time elevation plots, where the z-axis is scaled by time. Larger links close greater loops with respect to time elapsed.
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Fig. 16 Results from the second set of field trials performed while surveying the USCGC Escanaba in Boston, MA. The open-loop survey is

shown in (a) and (b). The deterministic strategy (c) (d) still makes loop-closures despite imagery affected by variable sunlight during the mission.

The proposed method (e) (f) selects revisit paths at the deepest part of the environment where sunlight has less effect on the imagery. Sample

images from the deterministic and proposed strategies are displayed in (g), (h), and (i). The uncertainty versus path length plots are shown in (j).

Visual loop-closures are represented by red links on the time elevation plots, where the z-axis is scaled by time. Larger links close greater loops

with respect to time elapsed.
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Fig. 17 The actual robot uncertainty and path length versus the robot

uncertainty and path length as predicted by the active SLAM algorithm

at the time of planning, for the field trials on the USCGC Escanaba.

The predicted outcomes for each planning event align very well with

the actual data collected by the robot. Black diamonds represent se-

lected revisit actions and white diamonds represent selecting continued

exploration.

achieving registrations (when the number of link proposals

is large).

9 Conclusion

In this paper, we proposed a comprehensive active SLAM

framework for underwater inspections. We presented a path

planning algorithm integrated with visual SLAM in order to

find and execute loop-closure revisit actions for a robot ex-

ploring an a priori unknown underwater environment sub-

ject to an acceptable uncertainty threshold. We combined a

sampling-based planning approach for efficiently exploring

the configuration space with an EIF framework for track-

ing the utility of candidate revisit paths. In addition, we in-

cluded the use of GP regression for predicting environment

saliency in unmapped areas and probabilistically handling

expected camera registrations along a path. Finally, we de-

veloped an opportunistic approach for selecting the best re-

visit paths that allows the robot to autonomously execute

useful loop-closure actions at any point during the mission,

while still exploring the target area in efficient time. The pro-

posed method was demonstrated using a hybrid simulation

with both synthetic and real camera imagery, and using real-

world field trials of a robot performing seafloor and hull-

relative inpections. The results showed that, on the whole,

our framework offers many benefits over other representa-

tive active SLAM methods: principled and accurate saliency

prediction, the ability to search and evaluate hundreds of

candidate paths, opportunistic path selection, and consistent

good performance over our experimental trials. This type of

active SLAM system is useful to accomplish robust, long-

term autonomy in marine environments.
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