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Abstract This chapter reviews the concept of pose-graph simultaneous
localization and mapping (SLAM) for underwater navigation. We show that
pose-graph SLAM is a generalized framework that can be applied to many
diverse underwater navigation problems in marine robotics. We highlight
three specific examples as applied in the areas of autonomous ship hull
inspection and multi-vehicle cooperative navigation.

1 Introduction

Simultaneous localization and mapping (SLAM) is a fundamental problem in
mobile robotics whereby a robot uses its noisy sensors to collect observations
of its surroundings in order to estimate a map of the environment while
simultaneously localizing itself within that same map. This is a coupled
chicken-and-egg state estimation problem, and remarkable progress has been
made over the last two decades in the formulation and solution to SLAM [1].

One of the resulting key innovations in the modeling of the SLAM prob-
lem has been the use of pose-graphs [2, 3], which provide a useful proba-
bilistic representation of the problem that allows for efficient solutions via
nonlinear optimization methods. This chapter provides an introduction to
pose-graph SLAM as a unifying framework for underwater navigation. We
first present an introduction to the general SLAM problem. Then, we show
how challenging SLAM problems stemming from representative marine
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robotics applications can be modeled and solved using these tools. In par-
ticular, we present three SLAM systems for underwater navigation: a visual
SLAM system using underwater cameras, a system that exploits planarity in
ship-hull inspection using sparse Doppler velocity log (DVL) measurements,
and a cooperative multi-vehicle localization system. All of these examples
showcase the pose-graph as a foundational tool for enabling autonomous
underwater robotics.

2 Simultaneous Localization and Mapping (SLAM)

Over the last several decades, robotics researchers have developed proba-
bilistic tools for fusing uncertain sensor data in order to localize within an a
priori unknown map—the SLAM problem. These tools have reached a level
of maturity where they are now widely available [4, 5, 2].

Early approaches to the SLAM problem tracked the most recent robot
pose and landmarks throughout the environment in an extended Kalman
filter (EKF) [6, 7]. Here, the SLAM estimate is represented as a multivariate
Gaussian with mean vector and fully dense covariance matrix. Complexity
of the Kalman filter, however, grows with the size of the map, as the measure-
ment updates and memory requirements are quadratic in the state dimension.
Thrun et al. [8] observed that the information matrix (inverse of the covari-
ance matrix) of the estimate is approximately sparse, leading to more efficient
solutions using an information filtering approach that forced sparsity. The
information filtering approach features constant time measurement updates
and linear memory requirements. Extending the seminal work of Lu and
Milios [9], Eustice et al. [10] showed that by considering a delayed-state infor-
mation filter, the information matrix of the SLAM problem is exactly sparse,
leveraging the benefits of the information parameterization without sparse
approximation errors. Most SLAM systems today formulate the problem in
the exactly-sparse sense by optimizing over the entire robot trajectory.

2.1 SLAM Formulation

The full SLAM formulation considers optimizing over the entire history of
robot poses and landmarks. This problem can be solved using the maximum
a posteriori (MAP) estimate, given the prior observations of the robot motion
and landmarks in the environment:

X∗,L∗ = argmax
X,L

p(X,L|U ,Z), (1)
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(a) Full SLAM (b) Pose SLAM

(c) A (d) Λ (e) A (f) Λ

Fig. 1 Factor graph representations of the full SLAM (a) and pose SLAM (b) formulations.
The corresponding measurement Jacobian (A) and information matrix (Λ = A⊤A) for
each system are shown below the factor graphs, with matrix block entries corresponding
to poses in yellow and landmarks in purple. In the full SLAM system (a)(c)(d), loop-
closures include measurements to landmarks. The columns of the measurement Jacobian
A correspond to the following ordering: {x0,x1,x2,x3, l0}. In the pose SLAM system
(b)(e)(f), the columns of A correspond to an ordering of {x0,x1,x2,x3}.

where xi ∈ X are the robot poses, lk ∈ L are the landmark poses, ui ∈ U are
the control inputs (or motion observations), and zj ∈ Z are the perceptual
observations of map features. The full SLAM formulation is shown in Fig. 1(a)
in the form of a factor graph.

Often, when building a SLAM system, the SLAM problem is divided into
two sub-problems: (i) a “front-end” system that parses sensor measurements
to build an optimization problem, and (ii) a “back-end” solver that optimizes
over robot poses and map features.

The formulation considered in this work is pose SLAM (Fig. 1(b)), where
there is no explicit representation of landmarks, but rather features observed
in the environment are used to construct a relative measurement between
robot poses [9]. In this case, the MAP estimate becomes

X∗ = argmax
X

p(X|U ,Z), (2)

and the model of the environment is derived from the robot trajectory itself.
This formulation is especially beneficial when the main perceptual sensors
are cameras or laser scanners and the environment features are difficult to
repeatedly detect or are too numerous to track.

Assuming measurement models with additive Gaussian noise, the opti-
mization of (1) or (2) leads to the following nonlinear least-squares problem:



4 Stephen M. Chaves et al.

X∗,L∗ = argmax
X,L

p(X,L|U ,Z)

= argmin
X,L

− log p(X,L|U ,Z)

= argmin
X,L

[∑

i

‖xi − fi(xi−1,ui−1)‖
2
Σi

w
+
∑

j

‖zj − hj(xij , lkj
)‖2

Σ
j
v

]

,

(3)
where fi and hj are the measurement models with zero-mean additive Gaus-
sian noise with covariances Σi

w and Σj
v, and we define ‖e‖2Σ = e

⊤Σ−1
e.

Linearizing about the current estimate, the problem (3) collapses into a lin-
ear least-squares form for the state update vector, solved with the normal
equations:

argmin
∆Θ

‖A∆Θ− b‖2 ,

∆Θ =
(
A⊤A

)−1
A⊤

b,

(4)

where the vector Θ includes the poses and landmarks, A is the stacked
whitened measurement Jacobian, and b is the corresponding residual vec-
tor. Under the assumption of independent measurements, this formulation
leads to an information matrix (Λ = A⊤A) that is inherently sparse, as each
observation model depends on only a small subset of poses and landmarks.
Thus, modern back-end solvers leverage sparsity patterns to efficiently find
solutions.

We solve the nonlinear problem by re-linearizing about the new solution
and solving again, repeating until convergence (with Gauss-Newton, for
instance). Each linear problem is most commonly solved by direct meth-
ods such as Cholesky decomposition of the information matrix or QR fac-
torization of the measurement Jacobian [2, 3]. Aside from direct methods,
iterative methods, e.g., relaxation-based techniques [11] and conjugate gradi-
ents [12, 13] have also been applied to solve large linear systems in a more
memory-efficient and parallelizable way.

2.2 Graphical Representations of SLAM

The SLAM problem introduced above can also be viewed as a probabilistic
graphical model known as a factor graph (or pose-graph in the case of pose
SLAM, that is, with no explicit representation of landmarks). A factor graph
is a bipartite graph with two types of components: nodes that represent
variables to be estimated (poses along the robot’s trajectory) and factors that
represent constraints over the variables (noisy sensor measurements), as seen
in Fig. 1. If each measurement is encoded in a factor, Ψi(xi, li), where xi and
li are the robot and landmark poses corresponding to measurement i (and
we assume all measurement noise terms are independent), the nonlinear
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least-squares problem can be written as

X∗,L∗ = argmin
X,L

∑

i

Ψi(xi, li), (5)

such that the optimization minimizes the sum of squared errors of all the
factor potentials. This graphical model view of SLAM is equivalent to the
optimization view presented above.

2.3 Advantages of Graph-based SLAM Methods

Indeed, recent research in SLAM has turned to graph-based solutions in
order to avoid drawbacks associated with filtering-based methods [2, 3].
Notably, EKF-SLAM has quadratic complexity per update, but graph-based
methods that parameterize the entire robot trajectory in the information
form feature constant-time updates and linear memory requirements. Hence,
they are faster on large-scale problems. In addition, unlike filtering-based
methods, these optimization-based solutions avoid the commitment to a
static linearization point and take advantage of relinearization to better
handle nonlinearities in the SLAM problem.

Despite their advantages, nonlinear least-squares SLAM methods present
some important challenges. First, since they operate on the information ma-
trix, it is expensive to recover the joint covariances of the estimated variables.
Nonetheless, some methods have been developed to improve the speed of
joint covariance recovery [14]. Second, since these methods smooth the entire
trajectory of the robot, the complexity of the problem grows unbounded over
time and peformance degrades as the robot explores. However, the examples
presented in this chapter are made possible by online incremental graph-based
solvers like Incremental Smoothing and Mapping (iSAM) [3] and iSAM2 [15]
that leverage smart variable ordering and selective relinearization, and only
update the solutions to the parts of the pose-graph that have changed. As
we will see in section 3.2.3, the generic linear constraints (GLC) method [16]
can additionally be used to compress the representation of the problem and
enable tractable operation in large environments over long durations.

Several open source factor graph libraries are available to the community
including: Ceres solver [17], iSAM [3], GTSAM [18], and g2o [19].
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3 Underwater Pose-Graph Applications

In this section, we outline several representative applications for underwater
navigation where the use of pose-graphs has extended the state-of-the-art.
Underwater SLAM can take on many forms depending on the sensors avail-
able, the operating environment, and the autonomous task to be executed.
As we will show, the pose-graph formulation is applicable to many of these
forms.

For the remainder of the chapter, let xij = [xij , yij , zij , φij , θij , ψij ]
⊤ be the

6-degree-of-freedom (DOF) relative-pose of frame j as expressed in frame
i, where x, y, z are the Cartesian translation components, and φij , θij , and
ψij denote the roll (x-axis), pitch (y-axis), and yaw (z-axis) Euler angles,
respectively. A pose with a single subscript (e.g., xi) is expressed with respect
to a common local frame.

One foundational sensor that enables underwater SLAM is the Doppler
velocity log (DVL), central to all applications presented below. As the robot
explores the environment, pose nodes are added to the graph and the dead-
reckoned navigation estimate from the DVL is constructed into odometry
constraints between consecutive robot poses. In this way, the DVL provides
an odometric backbone for various pose SLAM formulations. When available
and applicable, absolute prior measurements from, for example, pressure
depth, inertial measurement unit (IMU), gyroscope, compass, or GPS can be
added to the pose-graph as unary factors.

In the sections that follow, we highlight other factor types derived for spe-
cific underwater applications, as well as describe methods centered around
pose SLAM that are state-of-the-art in marine autonomy.

3.1 Visual SLAM with Underwater Cameras

Cameras are prevalent perceptual sensors in robotics research because of
their low cost but also highly accurate and rich data. Their popularity has led
to research in visual SLAM, where measurements derived from the camera
are included in the inference1. Within the visual pose SLAM formulation,
the robot poses in the pose-graph represent discrete image capture events
during the underwater mission, and feature-based registrations between
overlapping images [22] produce pairwise constraints between the poses.
These camera-derived constraints often occur between sequential poses in the
graph; however, they can also serve as loop-closure constraints between non-
sequential poses when the robot revisits a portion of the environment that it
has previously seen, enabling large reductions in its navigation uncertainty.

1 More background on visual SLAM can be found in [20, 21].



Pose-Graph SLAM for Underwater Navigation 7

The visual registration process searches for overlapping images within
the pose-graph, proposes a camera registration hypothesis given two image
candidates, and adds the camera-derived constraint to the graph upon a
successful registration. A typical pairwise registration pipeline is shown in
Fig. 2 and is described as follows:

1. Given two overlapping images collected by the robot, first undistort
each image and enhance with contrast-limited adaptive histogram search
(CLAHS) [23].

2. Extract features such as scale-invariant feature transform (SIFT) [24] or
speeded up robust features (SURF) [25] from each image.

3. Match features between the images using a nearest-neighbors search in
the high-dimensional feature space assisted by pose-constrained corre-
spondence search (PCCS) [20].

4. Fit a projective model among feature matching inliers using a geometric
consensus algorithm such as random sample consensus (RANSAC) [26].

5. Perform a two-view bundle adjustment problem to solve for the 5-DOF
bearing-only transformation between camera poses and its first-order
covariance estimate [27].

The camera measurement produces a low-rank (modulo scale) relative-pose
constraint between two robot poses i and j in the SLAM graph. This mea-
surement, h5dof , therefore has five DOFs: three rotations, and a vector rep-
resenting the direction of translation that is parameterized by azimuth and
elevation angles. We denote the camera measurement as

h5dof (xi,xj) = [αij , βij , φij , θij , ψij ]
⊤, (6)

consisting of the baseline direction of motion azimuth αij , elevation βij , and
the relative Euler angles φij , θij , ψij .

3.1.1 Saliency-informed Visual SLAM

The underwater environment is particularly challenging for visual SLAM be-
cause it does not always contain visually useful features for camera-derived
measurements. In the case of featureless images, the registration pipeline
spends much time attempting registrations that are very likely to fail, despite
overlap between the image candidates. For autonomous ship hull inspection,
Kim and Eustice [21] discovered that the success of camera registrations was
correlated to the texture richness, or visual saliency, of the corresponding im-
ages. In response, they developed two bag-of-words (BoW)-based measures
of image registrability, local saliency and global saliency, to better inform the
visual SLAM process.
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(a) Raw (b) Enhanced (c) PCCS (d) Putative (e) Inliers

(f) Raw (g) Enhanced (h) PCCS (i) Putative (j) Inliers

Fig. 2 Figures courtesy of Kim and Eustice [21]. Underwater visual SLAM: The pairwise
image registration pipeline is shown for two registration hypotheses. The top row shows
a feature-poor image set that registers successfully because of strong relative constraints
between poses that guide feature-matching via PCCS. The bottom row is also a successful
registration, but largely due to the strong features in the images. Steps in the registration
pipeline are shown from left to right: (a)(f) Raw overlapping images. (b)(g) Undistorted
and enhanced, before extracting features. (c)(h) Feature matching is guided by PCCS. (d)(i)
Putative correspondences. (e)(j) Geometric consensus is used to identify inliers. Finally, a
two-view bundle adjustment solves for the 5-DOF relative-pose constraint.

In a framework known as saliency-informed visual SLAM, Kim and Eustice
[21] augmented the SLAM system with the knowledge of visual saliency in
order to design a more efficient and robust loop-closure registration process.
This system first limits the number of poses added to the graph by only
adding poses corresponding to images that pass a local saliency threshold.
This thresholding ensures that the graph predominantly contains poses ex-
pected to be useful for camera-derived measurements and eliminates poses
with a low likelihood of registration. Second, the system orders and proposes
loop-closing camera measurement hypotheses according to a measure of
saliency-weighted geometric information gain:

Iij
L =

{
SLj

2
ln

|R+H5dofΣii,jjH
5dof⊤|

|R| , ifSLj
> Smin

L

0, otherwise
, (7)
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Fig. 3 Figures courtesy of Kim and Eustice [21]. Real-time saliency-informed visual SLAM
with the HAUV on the SS Curtiss. The pose-graph resulting from SLAM is shown in
(a) in blue, with red links representing camera-derived constraints between poses. For
comparison, the trajectory estimate from dead-reckoned navigation based on the DVL
alone is displayed in gray. The SLAM pose-graph is shown again in (b) with the z-axis
scaled by time. In this view, larger red links correspond to larger loop-closures in time.
Two loop-closure image pairs are shown in (c).

where R is the five-DOF camera measurement covariance, H5dof is the mea-
surement Jacobian of (6), Σii,jj is the joint marginal covariance of current
pose i and target pose j from the current SLAM estimate, SLj

is the local
saliency of image j, and Smin

L is the minimum local saliency threshold.
Proposing loop-closures in this way leads to registration hypotheses that

both induce significant information in the pose-graph and are likely to be suc-
cessfully registered, thereby focusing computational resources during SLAM
to the most worthwhile loop-closure candidates. The saliency-informed vi-
sual SLAM process is shown in Fig. 3 for autonomous ship hull inspection
with the HAUV. This result features a total mission time of 3.40 h and 8,728
poses. The image registration component totalled 0.79 h and the (cumulative)
optimization within iSAM [3] totalled 0.52 h. Thus, the cumulative process-
ing time for this system was 1.31 h, which is 2.6 times faster than real time.
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Fig. 4 Active visual SLAM results with a hybrid simulation of autonomous ship hull in-
spection. Shown are four inspection strategies: open-loop coverage survey, a deterministic
pre-planned strategy (DET), the PDN method [28], and the opportunistic active SLAM al-
gorithm [29]. The trajectory resulting from the opportunistic approach [29] is shown in (a),
with poses color-coded by visual saliency (red=salient, blue=non-salient). A time-elevation
plot is shown in (b) with camera-derived constraints in the pose-graph displayed by red
links. The uncertainty vs. path length plot of the four strategies in shown in (c). Built on
the saliency-informed visual SLAM framework, both the PDN and opportunistic active
SLAM methods perform favorably in bounding navigation uncertainty while maintaining
efficient area coverage for the inspection task.

3.1.2 Active Visual SLAM

The benefit of saliency-informed visual SLAM can be extended to the active
SLAM paradigm, where the robot makes decisions about which actions to
execute in order to improve the performance of SLAM. Recent works [28, 29]
performed belief-space planning for active SLAM with the saliency-informed
pose SLAM formulation outlined above.

We can view the active SLAM framework through the lens of the pose-
graph by treating each candidate trajectory (or action) as a set of predicted
virtual poses and factors that are added to the existing pose-graph built by
the robot up to planning time. The robot can then evaluate the solution of this
simulated SLAM system within an objective function that quantifies some
information-theoretic measure, like navigation uncertainty as described by
the covariance matrix. Results from active SLAM methods for autonomous
ship hull inspection are given in Fig. 4.
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(a) (b)

A

B

C

(c)

Fig. 5 Size comparison of he HAUV and a typically-sized surveyed vessel ((a) and (b)).
Using factor graph SLAM, the surface of the ship hull can be estimated as a collection of
locally planar patches, shown as gray patches in (c).

3.2 Planar SLAM from Sparse DVL Points

One of the main benefits of factor graphs is the ease of including additional
sources of information. In the case of visual SLAM, the vehicle can constrain
the estimate of its trajectory with non-visual perceptual data, such as sonar
data or acoustic ranges. One interesting source of information is the extraction
of coarse perceptual cues using the DVL. In this section, we describe how
the DVL can model locally planar environments using a factor graph SLAM
back-end2.

In addition to measuring the velocity of an underwater vehicle, the raw
DVL sensor data contains the range of each of the four beams. These three-
dimensional (3D) points provide sparse perceptual information that a few
researchers have leveraged in prior work, with a particular focus on terrain-
aided localization and bathymetric SLAM. Underwater terrain-aided tech-
niques are typically performed with a multibeam sonar, which is much more
dense than a DVL. Despite this trend, Eustice et al. [32] and Meduna et al. [33]
proposed methods for a vehicle equipped with a DVL to localize with respect
to a prior bathymetric map derived from a large surface vessel equipped
with a multibeam sonar with high spatial resolution.

More recently, Ozog et al. [31] leveraged this information in the context
of automated underwater ship hull inspection with the HAUV, which estab-
lishes hull-relative navigation using a DVL pointed nadir to the ship hull
surface [34]. In particular, they used the sparse DVL range returns to model a

2 A more detailed description can be found in [30, 31].
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large ship hull as a collection of locally planar features, greatly improving the
robustness of long-term underwater visual SLAM across multiple sessions.
In this section, we briefly summarize this approach and describe factors
necessary for inclusion into a factor graph SLAM back-end.

3.2.1 Pose-to-plane factors

As the HAUV inspects a ship hull, it fits a least-squares 3D plane to a col-
lection of DVL points in the vehicle frame. Suppose this plane, indexed by
k and denoted πk, is observed with respect to the vehicle at time i. The
corresponding observation model for this measurement is

zπik
= xi ⊟ πk +wik, (8)

where xi is a pose indexed by i, wk ∼ N (0,Σwik
), and ⊟ is a nonlinear

function that expresses plane πk with respect to pose frame i. For this section,
a plane π

⊤ = [nx, ny, nz]
⊤ is a 3D column vector consisting of the surface

normal of the plane in Euclidean coordinates scaled by the distance of the
plane to the local origin.

3.2.2 Piecewise-planar factors

Ship hulls inspected by the HAUV typically exhibit curvature, both in the
bow-to-stern and side-to-centerline directions. Therefore, Ozog et al. noted
that the HAUV will observe neighboring planar patches that are themselves
not co-planar. To address this, they adapted a ternary factor that can constrain
two neighboring planes that do not necessarily overlap. The corresponding
observation model for a piecewise planar (“pwp”) measurement, zpwp

πik
, of

two neighboring planes, k and l are as follows:

z
pwp
πkl

= (xi ⊟ πk)− (xi ⊟ πl) +w
pwp
kl , (9)

where w
pwp
kl ∼ N (0,Σw

pwp

kl
) is an error term that accounts for the curvature

of the ship hull being inspected. By introducing this term, the difference
between planes k and l are weighted to give account for them being non-
coplanar. In addition, the measurement is conditionally Gaussian by construc-
tion and so can be easily incorporated into the factor graph. The curvature
model is based on two characteristic radii that are briefly described in Fig. 6.
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(a) (b)

Fig. 6 Characteristic radii overview for side-to-side curvature (a) and top-to-bottom cur-
vature (b). These radii account for allowable variations in the surface normals of two
neighboring planar patches.

3.2.3 Multi-session SLAM

The planar factors described in this section are particularly useful in the
context of multi-session SLAM. Ozog et al. showed that these observation
models can be incorporated to a visual localization pipeline using a combina-
tion of particle filtering and visual SLAM techniques described in Section 3.1.
Once localized, the HAUV further adds factors into the SLAM graph us-
ing the method inspired from [35]. With this process, multiple sessions can
be automatically aligned into a common reference frame in real-time. This
pipeline is illustrated in Fig. 7, along with the keyframes used for the visual
re-acquisition of the hull.

The HAUV can maintain real-time performance of multi-session SLAM
by marginalizing redundant nodes in the pose-graph. Once a pose node is
marginalized, however, it induces dense connectivity to other nodes. The
GLC framework alleviates this by replacing the target information, Λt with a
n-ary factor:

zglc = Gxc +w
′,

where w
′ ∼ N (0, Iq×q), G = D1/2U⊤, Λt = UDU⊤, q is the rank of Λt, and

xc is the current linearization of nodes contained in the elimination clique.
UDU⊤ is the Eigendecomposition of Λt, where U is a p× q matrix of Eigen-
vectors and D is a q × q diagonal matrix of Eigenvalues. To preserve sparsity
in the graph, the target information Λt is approximated using a Chow-Liu
Tree (CLT) structure, where the CLT’s unary and binary potentials are repre-
sented as GLC factors3. Thus, GLC serves as an approximate marginalization
method for reducing computational complexity of the pose-graph. In the
example of Fig. 7, the multi-session pose-graph is reduced from 50,624 to
1,486 nodes.

3 A more detailed description of GLC can be found in [16].
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(a) Eight sessions aligned to a common hull-relative frame (each session
is shown with a different color). Node count: 50,624.

(b) Preserved nodes after GLC sparsification. Node count: 1,486.

(c) Sunlight reflections from water (d) Changes in illumination

(e) Low overlap (f) Sunlight reflections and shadows on
hull, 2011 (left) to 2014 (right)

Fig. 7 Planar-based factor potentials and GLC graph sparsification play a key part in the
HAUV localization system. This method works in conjunction with the visual SLAM tech-
niques from Section 3.1 to allow for long-term automated ship hull surveillance. Successful
instances of localization in particularly challenging hull regions are shown in (c) through
(f), with visual feature correspondences shown in red.
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Fig. 8 Cooperative multiple vehicle network. Yellow vehicles (right) benefit from the in-
formation shared from blue vehicles (left). Note that communication may be bidirectional.

3.3 Cooperative Localization

Underwater localization with autonomous underwater vehicles (AUVs) in
the mid-depth zone is notoriously difficult [36]. For example, both terrain-
aided and visually-aided navigation assume that vehicles are within sensing
range of the seafloor. Underwater vehicles typically employ acoustic beacon
networks, such as narrowband long-baseline (LBL) and ultra-short-baseline
(USBL), to obtain accurate bounded-error navigation in this regime. Acoustic
beacon methods, however, generally require additional infrastructure and
limit vehicle operations to the acoustic footprint of the beacons.

Acoustic modems enable vehicles to both share data and observe their rel-
ative range; however, the underwater acoustic channel is unreliable, exhibits
low bandwidth, and suffers from high latency (sound is orders of magnitude
slower than light) [37]. Despite these challenges, cooperative localization has
been effectively implemented among teams of underwater vehicles (Fig. 8).
Each vehicle is treated as a mobile acoustic navigation beacon, which re-
quires no additional external infrastructure and is not limited in the range
of operations by static beacons. In this section, we show that an effective
cooperative localization framework can be built by exploiting the structure
of the underlying factor graph4.

4 A more detailed description of cooperative localization with factor graph based algo-
rithms appears in [38, 39].
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Fig. 9 Example cooperative localization factor graph. Empty circles represent variable
pose nodes, solid dots are odometry and prior factors, and arrows illustrate range-only
factors and the direction of communication. In this example, red represents a topside ship
with access only to GPS, while blue and orange represent AUVs.

3.3.1 Acoustic Range Observation Model

The use of synchronous-clock hardware enables a team of vehicles to observe
their relative range via the one-way-travel-time (OWTT) of narrowband
acoustic broadcasts [40]. The OWTT relative range is measured between
the transmitting vehicle at the time-of-launch (TOL) and the receiving ve-
hicle at the time-of-arrival (TOA). Since ranging is passive—all receiving
platforms observe relative range from a single broadcast unlike a two-way
ping—OWTT networks scale well.

The OWTT relative range is modeled as the Euclidean distance between
the transmitting and receiving vehicles

zr = hr(xTOL,xTOA) + wr

=
∥
∥xTOL − xTOA

∥
∥
2
+ wr,

where wr ∼ N
(
0, σ2

r

)
is an additive noise perturbation. Since attitude and

depth are typically instrumented with small bounded error, we often project
the 3D range measurement into the horizontal plane.

3.3.2 Multiple Vehicle Factor Graph

Representing correlation that develops between individual vehicle estimates
as a result of relative observations has been a challenge for cooperative local-
ization algorithms [41, 42]. Factor graphs explicitly represent this correlation
by maintaining a distribution over the trajectories of all vehicles.
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Earlier, we showed the pose SLAM formulation citing a single vehicle (2).
We can expand this formulation to represent the posterior distribution of a
network of vehicles given relative constraints. Consider, for example, an M
vehicle network. The posterior can be factored

p(X1, . . . , XM |Z1, . . . , ZM , Zr) ∝
M∏

i=1

p(Xi|Zi)
︸ ︷︷ ︸

Clocali

∏

k

p(zk|xik ,xjk)
︸ ︷︷ ︸

range factors

, (10)

whereXi is the set of ith vehicle poses, Zi is the set of ith vehicle observations,
and Zr is the set of relative vehicle OWTT range constraints and each zk

represents a constraint between poses on vehicles ik and jk. We see that the
posterior factors as a product of each vehicle’s local information (Ci) and the
set of all relative range observations. Therefore, in order to construct (and
perform inference on) the full factor graph, the ith vehicle must have access
to the set of local factors from all other vehicles, {Clocalj}j 6=i, and the set of
all relative vehicle factors. Distributed estimation algorithms can leverage
the sparse factor graph structure in order to broadcast information across the
vehicle network. The factor graph for a three vehicle network is illustrated in
Fig. 9.

Recently, several authors have proposed real time implementations that
exploit this property [43, 44, 39]. Fig. 10 illustrates an example of a three
vehicle network consisting of two AUVs and a topside ship implementing
the algorithm proposed in [39]. AUV-A had intermittent access to GPS during
brief surface intervals (highlighted in green). AUV-B remained subsea during
the duration of the trial. Fig. 10(b) shows the resulting position uncertainty for
AUV-B is bounded and nearly identical to that of the post-process centralized
estimator.

Cooperative localization provides a means to improve navigation accu-
racy by exploiting relative range constraints within networks of vehicles.
An architecture based around factor graphs addresses challenges endemic
to cooperative localization, provides a sparse representation ideal for low-
bandwidth communication networks, and is extensible to new factor types.

4 Conclusion

This chapter has shown how state-of-the-art knowledge about the SLAM
problem can enable key marine robotics applications like ship-hull inspec-
tion or cooperative navigation. We reviewed the general concept of pose
SLAM and its associated mathematical framework based on factor graphs
and nonlinear least-squares optimization. We then presented three diverse
underwater SLAM systems applied to autonomous inspection and coopera-
tive navigation tasks.
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Fig. 10 Summary of field trial and performance comparison. ((a)) An XY view of the
vehicle trajectories. Blue dots indicate where AUV-B received range observations. ((b)) The
smoothed uncertainty in each AUV-B pose as the fourth root of the determinant of the
pose marginal covariance.
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