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Abstract

Autonomous mobile robots operating in a priori unknown environments must be able to

integrate path planning with simultaneous localization and mapping (SLAM) in order to

perform tasks like exploration, search and rescue, inspection, reconnaissance, target-tracking,

and others. This level of autonomy is especially difficult in underwater environments, where

GPS is unavailable, communication is limited, and environment features may be sparsely-

distributed. In these situations, the path taken by the robot can drastically affect the

performance of SLAM, so the robot must plan and act intelligently and efficiently to ensure

successful task completion.

This document proposes novel research in belief-space planning for active visual SLAM

in underwater environments. Our motivating application is ship hull inspection with an

autonomous underwater robot. We design a Gaussian belief-space planning formulation that

accounts for the randomness of the loop-closure measurements in visual SLAM and serves

as the mathematical foundation for the research in this thesis. Combining this planning

formulation with sampling-based techniques, we efficiently search for loop-closure actions

throughout the environment and present a two-step approach for selecting revisit actions that

results in an opportunistic active SLAM framework. The proposed active SLAM method is

tested in hybrid simulations and real-world field trials of an underwater robot performing

inspections of a physical modeling basin and a U.S. Coast Guard cutter.

To reduce computational load, we present research into efficient planning by compressing

the representation and examining the structure of the underlying SLAM system. We propose

the use of graph sparsification methods online to reduce complexity by planning with an

approximate distribution that represents the original, full pose graph. We also propose the

use of the Bayes tree data structure—first introduced for fast inference in SLAM—to perform

efficient incremental updates when evaluating candidate plans that are similar. As a final

contribution, we design risk-averse objective functions that account for the randomness within

our planning formulation. We show that this aversion to uncertainty in the posterior belief

leads to desirable and intuitive behavior within active SLAM.
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Chapter 1

Introduction

1.1 Motivation

Autonomous mobile robots operating in real-world environments must fulfill three core

competencies: localization, mapping, and planning. Solutions to these problems are important

in order to perform tasks like exploration, search and rescue, inspection, reconnaissance,

target-tracking, and others [113]. Research in these areas has been applied to a wide range

of mobile robotic platforms, including unmanned aerial vehicles (UAVs) [3, 22], self-driving

cars [138, 139], and autonomous underwater vehicles (AUVs) [47, 133]. Under the topic

of simultaneous localization and mapping (SLAM), localization and mapping have been

well-studied in the past decades, resulting in formulations that allow robots to estimate their

state and model their environment [5, 29, 36]. Robots must plan actions within the SLAM

framework to be truly autonomous, but research toward integrating planning and SLAM

solutions is still in its early years.

SLAM solutions are typically decoupled from the path or control policy given to the robot.

Likewise, traditional planning algorithms assume that accurate localization is available and

information about the environment is at least partially known [85]. Of course, real-world

robots operate at the intersection of these topics where assumptions about the available prior

information are not always true, posing an interesting challenge for robust autonomy.

Autonomy in marine environments can be especially difficult, but AUVs have been

successfully deployed in many challenging environments [69, 102, 136, 137]. Underwater

robots commonly operate in GPS-denied scenarios with limited communication, often over

large unknown areas with sparsely-distributed features. In these situations, the path taken

by the robot through the environment can drastically affect the performance of SLAM. Thus,

real-world robotic systems demand a comprehensive, probabilistic framework for integrated

localization, mapping, and planning.

1



Figure 1.1 The HAUV (a) used for autonomous hull inspection of ships like the SS Curtiss (b).

(a) HAUV (b) SS Curtiss

This document proposes advances in active SLAM frameworks for autonomous visual

inspection of underwater environments with a mobile robot. The contributions of this work

include: the development of a planning formulation for accurate prediction of the robot’s belief,

algorithms for finding candidate paths useful for closing loops in the SLAM system, efficient

methods for planning by exploiting the representation of the problem, and a risk-averse

optimization for producing desirable and intuitive behavior within active SLAM.

1.2 Review of Ship Hull Inspection with the HAUV

The main motivation for the work in this document is the application of autonomous ship hull

inspection using a Hovering Autonomous Underwater Vehicle (HAUV), shown in Fig. 1.1(a).

This application is the focus of a large joint research project between the University of

Michigan, Massachusetts Institute of Technology, Carnegie Mellon University, and Bluefin

Robotics [60]. The HAUV uses its perceptual sensors to survey the underwater portion of

ships like the SS Curtiss (Fig. 1.1(b)) in order to detect foreign objects, verify structural

integrity, identify corrosion, etc. These tasks are traditionally carried out by human divers, but

the underwater environment can be very dangerous. Developing a robust robotic system for

inspection removes humans from potential hazards and saves on expensive diver deployment

and ship downtime costs. In addition, the rich metric models of the environment built by

the robot are useful for tasks other than inspection and provide a nice visualization of the

environment. See Fig. 1.2 for examples of visualizations derived from underwater imagery

collected by the HAUV.

The HAUV was developed specifically for in-water autonomous ship hull inspection and

features three aspects that set it apart from other AUVs: its small size, ability to hover while

submerged, and hull-relative navigation capability [59]. The vehicle’s main proprioceptive

2



Figure 1.2 Figures courtesy of Ozog [100], Ozog and Eustice [101]. (a) Photomosaic augmented
with 3D depth information derived from stereo camera imagery collected by the HAUV. (b) (c)
Zoomed views show the rich visualizations possible as a result of autonomous ship hull inspection.

(a) 3D Photomosaic

(b) (c)

sensor is a Doppler velocity log (DVL), with which it performs dead-reckoned navigation via

Doppler velocimetry [50] in lieu of traditional inertial methods [81] or approaches based on

acoustic beacon networks [129]. Measurements from the DVL allow the robot to maintain a

uniform standoff from the inspection surface and provide the ability to perform hull-relative

navigation. The HAUV is also equipped with underwater cameras (stereo and monocular)

and an imaging sonar (Dual frequency IDentification SONar (DIDSON)) to perceive the

environment. The perceptual sensors and DVL are positioned on an actuated tray that

rotates to always point normal to the inspection surface.

To survey the non-complex area of the ship, the robot performs visual SLAM while

following a nominal exploration policy that produces a lawn-mower-like trajectory through

the area of interest, visualized in Fig. 1.3. This SLAM problem has many challenges unique

to confined underwater environments; for instance, GPS is unavailable underwater and

communication is extremely limited without a tethered connection to the robot. In addition,

camera registrations rely on visual features that tend to be sparsely-distributed and imagery

is prone to suffer from backscatter in turbid water conditions. Yet, when visual registrations

3



Figure 1.3 (a) Visualization of the HAUV performing visual ship hull inspection following the
nominal exploration policy. (b) Over multiple missions of long durations, the inspection provides
dense coverage of the underwater portion of the hull.

(a)

(b)

can be made, the camera provides an accurate method for correcting drift in the SLAM

estimate.

In typical operation, the robot navigates following the nominal exploration policy in

an open-loop fashion. This type of trajectory leads to unbounded uncertainty growth in

the SLAM estimate. The robot can constrain its uncertainty (and uncertainty in the map)

by gathering loop-closure measurements that re-observe previously-seen portions of the

environment. Efficiently seeking and executing large loop-closure actions is the basis of the

work proposed in this thesis.

4



1.3 Review of SLAM

SLAM is a fundamental problem in robotics where a robot uses its sensors to collect noisy

observations of its surroundings in order to estimate a map of its environment and localize

itself within the map. Researchers in robotics have been studying SLAM for decades, such

that there are well-known probabilistic tools for handling the sensor data and solving the

underlying estimation problem [5, 29, 36]. In general, the SLAM problem can be divided

into two sub-problems: (i) a “front-end” system that parses sensor measurements, and (ii) a

“back-end” solver that optimizes over robot poses and map features.

Early approaches to the SLAM problem tracked the most recent robot pose and landmarks

throughout the environment in a Kalman filter [87, 116]. Here, the SLAM estimate is

represented as a multivariate Gaussian with mean vector and fully dense covariance matrix.

Complexity of the Kalman filter, however, grows with the size of the map, as the measurement

updates are cubic and memory requirements are quadratic in the state dimension. Thrun

et al. [120] observed that the information matrix (inverse of the covariance matrix) of the

estimate is approximately sparse, leading to more efficient solutions using an information

filtering approach that forced sparsity. The information filtering approach features constant

time measurement updates and linear memory requirements. Extending the seminal work of

Lu and Milios [92], Eustice et al. [40] showed that by considering a delayed-state information

filter, the information matrix of the SLAM problem is exactly sparse, leveraging the benefits of

the information parameterization without sparse approximation errors. Most SLAM systems

today formulate the problem in the exactly-sparse sense by optimizing over the entire robot

trajectory.

The full SLAM formulation considers optimizing over the entire history of robot poses

and landmarks. This problem can be solved using the maximum a posteriori (MAP) estimate,

given the prior observations of the robot motion and landmarks in the environment:

X∗,L∗ = argmax
X,L

p(X,L|U ,Z), (1.1)

where xi ∈ X are the robot poses, lk ∈ L are the landmark poses, ui ∈ U are the control

inputs (or motion observations), and zj ∈ Z are the perceptual observations of map features.

The full SLAM formulation is shown in Fig. 1.4(a) in the form of a factor graph.

The formulation considered in this work is pose SLAM (Fig. 1.4(b)), where there is no

explicit representation of landmarks, but rather features observed in the environment are

used to construct a relative measurement between robot poses [92]. In this case, the MAP
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Figure 1.4 Factor graph representations of the full SLAM (a) and pose SLAM (b) formulations. The
corresponding measurement Jacobian (A) and information matrix (Λ = A⊤A) for each system are
shown below the factor graphs, with matrix block entries colored by factor type. Prior measurements
(green), odometry measurements (blue), and loop-closures (red) are all represented. In the full SLAM
system (a)(c)(d), loop-closures include measurements to landmarks. The rows of the measurement
Jacobian A are ordered by prior measurement first, then odometry measurements, then loop-closures.
The columns correspond to the following ordering: {x0,x1,x2,x3,x4, l1, l2}. In the pose SLAM
system (b)(e)(f), the columns of A correspond to an ordering of {x0,x1,x2,x3,x4}.

(a) Full SLAM (b) Pose SLAM

(c) A (d) Λ (e) A (f) Λ

estimate becomes

X∗ = argmax
X

p(X|U ,Z), (1.2)

and the model of the environment is derived from the robot trajectory itself. This formulation

is especially beneficial when the main perceptual sensors are cameras or laser scanners and

the environment features are difficult to repeatedly observe or are too numerous to track.

Recent research in SLAM has turned to optimization-based solutions in order to avoid the

commitment to a static linearization point associated with filtering-based methods [29, 73].

Assuming measurement models with additive Gaussian noise, these methods formulate the
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optimization of (1.1) or (1.2) as a nonlinear least-squares problem:

X∗,L∗ = argmax
X,L

p(X,L|U ,Z) = argmin
X,L

− log p(X,L|U ,Z)

= argmin
X,L

[

∑

i

‖xi − fi(xi−1,ui−1)‖
2
Ωi

w
+
∑

j

‖zj − hj(xij , lkj)‖
2
Ωj

v

]

,
(1.3)

where fi and hj are the measurement models with zero-mean additive Gaussian noise with

covariances Ωi
w
−1

and Ωj
v
−1
, and we define ‖e‖2Ω = e⊤Ωe, where Ω is the inverse covariance

matrix (i.e., information matrix). Linearizing about the current estimate, the problem (1.3)

collapses into a linear least-squares form for the state update vector, solved with the standard

normal equations:

argmin
∆Θ

‖A∆Θ− b‖2 ,

∆Θ =
(

A⊤A
)−1

A⊤b,
(1.4)

where the vector Θ includes the poses and landmarks, A is the stacked whitened measurement

Jacobian, and b is the corresponding residual vector. Under the assumption of independent

measurements, this formulation leads to an information matrix (Λ = A⊤A) that is inherently

sparse, as each observation model depends on only a small subset of poses and landmarks.

Thus, modern back-end solvers leverage sparsity patterns to efficiently find solutions.

We solve the nonlinear problem by re-linearizing about the new solution and solving again,

repeating until convergence (with Gauss-Newton, for instance). Each linear problem is most

commonly solved by direct methods like Cholesky decomposition of the information matrix or

QR factorization of the measurement Jacobian [29, 73]. Aside from direct methods, iterative

methods like relaxation-based techniques [35] and conjugate gradients [30, 119] have also

been applied to solve large linear systems in a more memory-efficient and parallelizable way.

1.3.1 Graphical Representations

A common representation of SLAM in a graphical form is the factor graph. A factor graph is

a bipartite graph with two types of components: nodes that represent variables and factors

that represent constraint potentials over the variables. The factor graph for the SLAM

problem consists of nodes representing robot and landmarks poses, and factors representing

measurements, as seen in Fig. 1.4. If each measurement is encoded in a factor, ψi(xi, li),

where xi and li are the robot and landmark poses corresponding to measurement i (and

we assume all measurements are independent), the nonlinear least-squares problem can be

written as

X∗,L∗ = argmin
X,L

∑

i

ψi(xi, li), (1.5)
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such that the optimization minimizes the sum of squared errors of all the factor potentials.

The factor graph form directly corresponds to the structure of the measurement Jacobian

A. The information matrix Λ = A⊤A corresponds to another graphical model, the Markov

random field (MRF).

We will see that representing the SLAM problem in graphical form is very useful for

designing algorithms, even in the planning domain. We refer to the factor graph frequently

throughout the rest of this document.

1.3.2 Underwater Visual SLAM

Cameras are prevalent perceptual sensors in robotics research because of their low cost but

highly accurate and rich data. Their popularity has led to research in visual SLAM, where

measurements derived from the camera are included in the inference. Within the pose SLAM

formulation of the underwater inspection application, feature-based registrations between

overlapping images [54] produce pairwise constraints between robot poses. A typical pairwise

registration pipeline is shown in Fig. 1.5 and is described as follows:

1. Given two overlapping images collected by the robot, first perform radial undistortion on

each image and enhance with contrast-limited adaptive histogram specification (CLAHS)

[39].

2. Extract features such as Scale Invariant Feature Transform (SIFT) [91] or Speeded Up

Robust Features (SURF) [8] from each image.

3. Match features between the images using a nearest-neighbors search in the high-

dimensional feature space assisted by pose-constrained correspondence search (PCCS)

[42].

4. Fit a projective model among feature matching inliers using a geometric consensus

algorithm such as random sample consensus (RANSAC) [44].

5. Perform a two-view bundle adjustment problem to solve for the 5-degree of freedom

(DOF) bearing-only transformation between camera poses and first-order covariance

estimate [52].

The 5-DOF camera measurement produces a low-rank (modulo scale) relative-pose constraint

between two robot poses in the SLAM graph. In visual SLAM, these measurements serve as

loop-closure constraints.
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Figure 1.5 Figures courtesy of Kim and Eustice [79]. Underwater visual SLAM: The pairwise image
registration pipeline is shown for two registration hypotheses. The top row shows a feature-poor
image set that registers successfully because of strong relative constraints between poses that guide
feature-matching (PCCS). The bottom row is also a successful registration, but largely due to
the strong features in the images. Steps in the registration pipeline are shown from left to right:
(a)(f) Raw overlapping images. (b)(g) Undistorted and enhanced, before extracting features. (c)(h)
Feature matching is guided by PCCS. (d)(i) Putative correspondences. (e)(j) Geometric consensus
is used to identify inliers. Finally, a two-view bundle adjustment solves for the 5-DOF relative pose
constraint.

(a) Raw (b) Enhanced (c) PCCS (d) Putative (e) Inliers

(f) Raw (g) Enhanced (h) PCCS (i) Putative (j) Inliers

1.4 Review of Robot Planning

The SLAM formulation assumes control actions are inputs to the system, such that the

inference process is decoupled from any notion of path planning. But, it is well-known that the

performance of SLAM is greatly influenced by the robot’s trajectory through the environment;

the path directly affects the accuracy of localization, the quality of the resulting map, the

convergence of the solution, the rate of area coverage, and the ability to execute tasks. This

calls for research toward the integration of planning and SLAM into a comprehensive system

for robust autonomy.
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1.4.1 Deterministic Planning

Traditional path planning for robots considers the problem of finding a collision-free path

from a start pose to a goal pose given known state and known environment. There are two

concerns with this planning problem: feasibility (“does a path exist?”) and optimality (“what

is the best path?”). Early approaches for solving these point-to-point queries discretized

the free space into grid cells and applied forward search algorithms [85]. Systematic search

algorithms like breadth-first and depth-first search are complete, and thus will find a solution

if one exists. In the case of a performance criterion like shortest distance, search strategies

like Dijkstra’s [32] or A* [53] are preferred, as these methods are both complete and optimal.

Alternatively, value iteration can also be applied to find optimal plans.

Discrete planning has its disadvantages. Notably, discrete planners are only complete

(and optimal) up to grid resolution and thus have trouble expanding to continuous and

high-dimensional spaces. In addition, it may be difficult to explicitly represent the free

space in the environment. In response, sampling-based planning has been very successful

in addressing these issues. Sampling-based algorithms provide a stochastic discretization of

high-dimensional continuous spaces [24, 85]. The general idea behind hallmark algorithms

like the Probabilistic Roadmap (PRM) [76] or Rapidly-exploring Random Tree (RRT) [86] is

to sample robot configurations, check for collisions, and connect collision-free paths between

samples. These algorithms are efficient for high-dimensional spaces, relying on the concept

that collision-checking a sampled point is generally easier than explicitly representing free

space. As the number of samples tends to infinity, these planners are guaranteed to find

a solution if it exists. Therefore, they are probabilistically complete. Recent extensions

to sampling-based planning have provided asymptotic optimality guarantees by connecting

samples intelligently [75].

1.4.2 Planning under Uncertainty

Unfortunately, all of the above planning algorithms assume deterministic (known) information

about the robot’s state and environment. Real-world robotic systems must make decisions

with imperfect state information by planning in the robot’s belief-space, the space of probability

distributions of the state space. Generally, three sources of uncertainty must be considered

during planning:

• motion uncertainty, where the control input applied to the robot results in a stochastic

action step,

• sensing uncertainty, where the robot receives noisy and incomplete observations of its

10



state and environment from its sensors, and

• environment uncertainty, where the robot may be operating in an a priori unknown or

partially-known environment.

As a result, the planning problem is an instance of a partially-observable Markov decision

process (POMDP), a structure of problem for planning actions when the state is not directly

observable. The objective is to compute a policy that maps the belief space to the space

of control actions, but in general the solution to this problem is intractable due to the

extreme dimensionality of the underlying system [72]. Thus, much research in planning under

uncertainty has focused on approximations to the POMDP in order to plan for robotic tasks.

A thorough investigation of current research in belief-space planning in given in Chapter 2.

Active SLAM

The topic of active SLAM can be defined as a planning under uncertainty problem with a

goal of reducing uncertainty or maximizing information in the SLAM posterior. It generally

consists of three components: (i) searching for candidate control actions, (ii) defining a

multi-objective performance criterion to evaluate desirable outcomes, and (iii) optimizing

this criterion to select a set of control actions [15, 16, 80]. Carrillo et al. [16] defined the

general form of the performance criterion as an objective function that trades off costs related

to uncertainty in the parameters of the SLAM system and costs related to expected control

effort (i.e., path length, energy consumption, operation time, etc.).

In the robotics literature, the integration of planning with SLAM has its roots in active

exploration [49, 114, 117], where research focused on reducing uncertainty in the map

representation. More recent work examined path planning for information gathering [57], a

related problem to active SLAM formulated as maximizing information subject to budget

constraints. Active SLAM systems like those of Chaves et al. [20], Kim and Eustice [80],

Valencia et al. [122] focused more on the interaction between planning and SLAM, and how

the performance and efficiency of SLAM is improved with intelligent decisions regarding

which paths to travel. A more detailed literature review on active SLAM is presented in

Chapter 3.

1.5 Thesis Outline

This work addresses the following problems common to underwater visual SLAM:

1. Following an open-loop nominal exploration policy, the robot accumulates navigation

error and its uncertainty grows unbounded.
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2. The inference problem (both for SLAM and planning) becomes increasingly expensive

in terms of computation as the dimensionality of the system grows in spatial extent

and duration.

3. Visual features in the underwater environment are sparsely-distributed, such that much

of the imagery collected by the robot has little to no registrability. In addition, at

planning time it is unknown which camera registrations will be acquired.

To address the problems above, we propose the following contributions within the devel-

opment of an active SLAM system for underwater environments1:

1. We design a planning formulation for accurate prediction that accounts for the stochas-

ticity of the camera measurements and introduce random variables describing their

acquisition. We employ Gaussian process (GP) regression to probabilistically model the

visual registrability of the environment and derive the associated acquisition parameters.

2. We combine sampling-based techniques with our planning formulation to efficiently

search for loop-closure revisit paths throughout the environment. We present a two-step

approach for deciding when to close loops that results in an opportunistic active SLAM

framework.

3. We propose research into efficient planning by compressing the representation and

examining the structure of the underlying SLAM system. We propose the use of graph

sparsification methods online to reduce computational complexity by planning with

a sparsified approximate distribution in place of the full system. We also propose

the use of the Bayes tree data structure within active SLAM in order to perform fast

incremental updates when evaluating candidate plans that are very similar to each

other.

4. We design risk-averse objective functions for selecting revisit paths that account for

the randomness within our planning formulation. We show that this aversion to

uncertainty in the formulation leads to desirable and intuitive behavior within active

SLAM. Our optimization is built on an analytic approach to computing the posterior

belief distribution.

1.5.1 Document Roadmap

The contributions are detailed in the following chapters:

1Portions of these contributions previously appeared in Chaves and Eustice [19], Chaves et al. [20, 21, 23].
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Chapter 2 We propose a belief-space planning formulation considering the application

of active visual SLAM. We derive the resulting belief as a function of the random

measurements and their associated random acquisition variables, making the belief

itself also random. This formulation serves as the mathematical foundation for the

remaining chapters.

Chapter 3 We propose an approach to the active visual SLAM problem by combining the

planning formulation of Chapter 2 with sampling-based techniques. To survey the

target environment efficiently with bounded uncertainty, we design a path selection

process that is opportunistic. The performance of the full active SLAM framework for

autonomous ship hull inspection is tested in hybrid simulations and real-world field

trials.

Chapter 4 We investigate two concepts related to improving the efficiency of information-

theoretic planning evaluations. First, we reduce the dimensionality of the system by

compressing the representation with online graph sparsification. Second, we leverage

the structure in the problem by using the Bayes tree to efficiently evaluate candidate

plans.

Chapter 5 Inspired by expected utility theory, we design risk-averse objective functions

with respect to robot uncertainty. We compute the posterior belief distribution with an

analytic approach and present simulation results that are in accordance with rational

decision-making behavior.

Chapter 6 We conclude by summarizing the contributions of this thesis and suggesting

areas of future work.

Appendix A We provide a brief overview of the HAUV.
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Chapter 2

Belief-space Planning Formulation for

Visual SLAM

2.1 Introduction

Planning for probabilistic robotics can be formalized as a partially observable Markov decision

process (POMDP) [121]. Solving real-world POMDPs is generally intractable however, so

we must make some approximations in order to perform online decision-making for robotic

tasks. In this chapter, we present our framework for Gaussian belief-space planning as an

approximation to the underlying POMDP. We represent the distribution over robot states

as a Gaussian belief, which we track using Bayesian inference (i.e., solving the simultaneous

localization and mapping (SLAM) problem). By predicting the evolution of the belief into

the future, we can perform an optimization to select a set of control actions for the planning

problem of interest.

We formulate our belief-space planning framework considering its use with underwater

visual SLAM. As the robot moves through the environment, the SLAM system tracks its

belief by incorporating successful measurements when they are received. However at planning

time, it is unknown what the values of future measurements will be. Therefore, in order to

accurately model the prediction of the belief, we treat future measurements as random [126],

and derive the predicted belief as a function of the random measurements.

In addition, we propose the inclusion of stochastic measurement acquisition variables

into the planning formulation. The acquisition variables are Bernoulli random variables

that model whether or not each future measurement is actually acquired. For example, an

acquisition variable might describe whether a landmark is in the field of view of the robot,

whether two camera images overlap and are registered, or whether a message is received over
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Figure 2.1 Representative sample images captured on the underwater portion of the SS Curtiss

hull. The underwater feature distribution is highly diverse, ranging from feature-less (B,C) to
feature-rich (A,D) images. The robot poses are color-coded by their local saliency score, SL.
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a lossy communication channel. Consider our motivating application of ship hull inspection;

visual features in this underwater environment tend to be sparsely distributed such that much

of the imagery collected by the robot is not useful for registration (Fig. 2.1). The probability

of a successful two-view registration (i.e., probability of acquisition) is directly related to a

measure of visual saliency of the proposed camera images [79]. Similarly, the probability of

successful packet reception over an underwater acoustic channel is directly related to the

transmission range between the two modems [134], as shown in Fig. 2.2. In both of these

examples, accurately predicting future measurements requires accurately modeling whether

the measurements will be acquired. Like the measurements themselves, these acquisition

variables are also unknown at the time of planning, and therefore random.

This chapter presents our belief-space planning formulation that includes the random

measurements and random acquisition variables. We show that including the randomness in

the prediction leads to a belief that is a “distribution of distributions” [55]. In other words,

our formulation results in a distribution of beliefs, where a belief itself describes a distribution

over robot states.

We also show in this chapter how the planning formulation fits with the visual SLAM

framework for our application of ship hull inspection. We propose the use of Gaussian process

(GP) regression to model the distribution of visual saliency throughout the environment,

hence allowing us to accurately predict future measurements for planning. The formulation in

this chapter serves as the mathematical foundation for the rest of the work in this document.
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Figure 2.2 Figure from Walls et al. [134]. The probability of successful packet reception (λ(r)) for
underwater acoustic transmission is directly related to the broadcast range. Acoustic signals are
often used for communication between multiple underwater vehicles and a topside support ship.
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2.1.1 Related Work

The planning problem for probabilistic robotics is formally defined as a POMDP, where the

goal is to compute a control policy mapping belief states to actions [72]. It is well-known

that globally-optimal solutions to this problem are very difficult to compute and generally

intractable for problems of interesting size [103]. As a result, the planning under uncertainty

community has focused on finding approximations in order to handle real-world robotic

applications.

Point-based algorithms for POMDPs sample representative points in belief space and

iteratively apply value updates to compute a policy [4, 84, 108]. Without restricting the

representation of the belief, Bai et al. [4] used Monte Carlo sampling [118] to handle continuous

state and observation spaces in POMDPs and computed a global “approximately optimal”

policy offline. Porta et al. [108] parameterized the belief as a mixture of Gaussians or a set of

particles and applied a point-based solver.

A common trajectory optimization approach to belief-space planning is to represent the

belief as a Gaussian distribution, track its evolution (the belief dynamics) with an extended

Kalman filter (EKF), and use dynamic programming to compute a policy. Platt et al. [106]

performed Gaussian belief-space planning by assuming maximum-likelihood observations

from future control actions, allowing direct application of optimal control techniques like

linear quadratic regulator (LQR) to compute a policy. Erez and Smart [38] and Du Toit

and Burdick [34] offered a similar treatment of the problem, with the latter providing a

receding horizon control (RHC) strategy for planning. Van den Berg et al. [126] removed the
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maximum-likelihood observation assumption and computed a locally-optimal policy using

iterative linear quadratic Gaussian (LQG) by approximating the value function around a

nominal trajectory, effectively focusing the solution to relevant regions of the belief space.

Combining policy computation with sampling-based planning, Agha-mohammadi et al. [2]

computed feedback controllers over edges in a roadmap using stationary LQG.

Rather than compute a policy, other trajectory optimization methods directly optimize a

sequence of control actions in a locally-optimal framework [67, 88, 104, 105, 134]. Walls et al.

[134] assembled the EKF equations into a batch computation for the belief dynamics over

a horizon of control actions and performed a parameterized optimization. Indelman et al.

[67] used gradient descent and model predictive control (MPC) to continuously recompute a

trajectory given a belief calculated in the information-smoothing form. We additionally use

the information-smoothing approach in our formulation, modeled after common graph-based

SLAM solutions. Also like that of Indelman et al. [67] and Leung et al. [88], we consider a

shooting approach, where we optimize over control actions only. This is in contrast to partial

or full collocation for direct trajectory optimization, where the belief is explicitly included in

the decision variables of the optimization [104, 105].

Sampling-based or simulation-based belief-space approaches select the sampled sequence

of actions (or trajectory) to perform the optimization, trading off a discretization of the

action space in order to search for globally-optimal trajectories [13, 55, 57, 80, 109, 124]. The

formulation presented in this chapter is applicable to sampling-based or direct trajectory

optimization approaches alike, which we highlight in later chapters.

Regarding measurement acquisition in planning, Vitus and Tomlin [130] optimized sensor

placement in an environment given a weighting function defining the acquisition of the sensor

observation by a traveling vehicle. They use a sigmoid to approximate the weighting function

and provide gradient information to inform the optimization, an approach borrowed by

Patil et al. [104]. These methods describe the spatial distribution related to measurement

acquisition but do not model the randomness in the acquisition. Our approach is similar

to the formulation of Sinopoli et al. [115], who studied Kalman filtering for control given

measurements over a lossy communication channel. They derived the Kalman filter equations

as functions of the stochastic acquisition variables. Bopardikar et al. [11] used this filtering

formulation to compute a bound on error covariance propagation given sensor misdetections,

and planned with this bound over a Belief Roadmap (BRM) [109]. Kim and Eustice [80]

and Indelman et al. [67] included acquisition variables in belief-space planning for robotics

given the full information-smoothing form, but their formulations removed the effect of the

acquisition randomness in the resulting belief. Indelman et al. [67] accomplished this by using

expectation-maximization (EM) in the belief update.

17



We design a planning formulation that integrates with the underwater visual SLAM

framework of Kim and Eustice [79]. We propose the use of GP regression to predict the

visual saliency throughout the underwater environment, in order to model the probability of

acquisition for hypothesized pairwise camera registrations [110]. Recently, GPs have been

widely used in learning spatial distributions and predicting sensor data. Vasudevan et al.

[127] applied GP regression to model large and complex terrain maps. O’Callaghan and

Ramos [98] accurately predict an occupancy map using a GP with a trained neural network

kernel, despite dealing with noisy and sparse sensor information. Within marine environments,

Barkby et al. [7] used a GP to predict bathymetric data in unmapped patches in order to

perform SLAM without any actual sensor overlap. They achieve tractable prediction with

the GP over a large dataset by using a sparse covariance function [95].

2.2 Gaussian Belief-space Planning

Here we develop a planning formulation for active SLAM. Solving the full POMDP is

intractable, so we make an approximation to allow the belief to be represented as a param-

eterized distribution. In this case, as is common in probabilistic inference for robotics, we

represent the belief with a Gaussian distribution and track the evolution of the distribution

with Bayesian inference, i.e. our visual SLAM formulation. This approximation effectively

reduces the POMDP to a Markov decision process (MDP) in belief space. We can choose

optimal actions for the MDP according to the most likely state in the belief distribution

(the belief mean) and an estimate of the available information (the belief covariance). This

treatment of the planning problem is often referred to as Gaussian belief-space planning [106].

2.2.1 Optimal Planning Problem

The optimal planning problem consists of finding a sequence of control actions, U0:K−1 =

{uk}
K−1
k=0 , over a horizon of K planning steps that minimizes some objective function of the

robot’s belief over this horizon, formulated as

U∗
0:K−1 = argmin

U0:K−1

J (B0:K , U0:K−1) , (2.1)

where the set of beliefs B0:K = {Bk}
K
k=0 contains the belief at each planning step k. Contrary

to traditional planning in robotics where the optimization considers some deterministic state,

we replace the state with the Gaussian belief distribution. The planning problem is concerned

with finding future control actions for the robot to execute, so we must propagate the belief
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forward in time according to the sequence of controls considered. (The sequence of control

actions over the horizon of K steps is often called a macro-action [55].)

The objective function is comprised of stage costs and a final cost dependent on the

predicted belief of the robot at each planning step:

J (B0:K , U0:K−1) =
K−1
∑

k=0

ck(Bk,uk) + cK(BK). (2.2)

Previous works solved for the control actions in a trajectory-smoothing optimization, such

as gradient descent [67] or dynamic programming [126]. Alternatively, we can perform this

optimization within a sampling-based planning framework by selecting the sampled set of

control actions that minimizes the objective [13]. We will return to the discussion of the

optimal planning problem after examining the belief of the robot and its evolution.

2.2.2 Belief Inference

At planning time, the belief of the robot is estimated from the visual SLAM formulation,

B0 = p(X0|Z0,U0), and represented as a multivariate Gaussian: B0 ∼ N
(

X0
∗,Λ0

−1
)

. X0 is

the trajectory of discrete robot poses up to planning time. Z0 and U0 denote the history of

measurements and controls, respectively.

To predict the belief forward in time, we must incorporate the measurements and controls

related to the sequence of actions for the planning event. Thus, we define the belief at a

given planning step k ∈ [1, K] as

Bk = p(Xk|Z0,U0, Z1:k, U0:k−1), (2.3)

where Xk = X0 ∪ {xi}
k
i=1 is the trajectory of the robot that includes both real (historical)

poses (X0) and virtual, predicted (future) poses ({xi}
k
i=1). The predicted measurements are

represented by the set Z1:k. The belief distribution is represented by a multivariate Gaussian

with mean and covariance matrix (given in terms of the inverse information matrix):

Bk ∼ N
(

Xk
∗,Λk

−1
)

, (2.4)

found using the maximum a posteriori (MAP) estimate

Xk
∗ = argmin

Xk

−logBk. (2.5)
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The motion model for transitioning to step k + 1 from step k is

xk+1 = f(xk,uk,wk),

wk ∼ N
(

0,Ωw
−1
)

,
(2.6)

where wk is zero-mean additive Gaussian noise with covariance Ωw
−1. Equivalently, the

transition probability is expressed as p(xk+1|xk,uk) ∼ N
(

f(xk,uk,0),Ωw
−1
)

. There may

be multiple (nk) measurements associated with each planning step, such that the set of

observations at a single step k is Zk = {zk,j}
nk

j=1. The observation model for the random

measurement j at planning step k is

zk,j = h
(

Xj
k,vk,j

)

,

vk,j ∼ N
(

0,Ωk,j
v

−1
)

,
(2.7)

where vk,j is also zero-mean additive Gaussian noise with covariance Ωk,j
v

−1
, and Xj

k are the

state variables of interest involved in the measurement. The measurement likelihood function

is then p
(

zk,j|X
j
k

)

∼ N
(

h
(

Xj
k,0

)

,Ωk,j
v

−1
)

.

Using the standard assumption of an uninformative prior on the measurements, we can

write the belief distribution from (2.3) as

p(Xk|Z0,U0, Z1:k, U0:k−1) ∝

p(X0|Z0,U0)
k
∏

i=1

p(xi|xi−1,ui−1)

ni
∏

j=1

p
(

zi,j|X
j
i

)

.
(2.8)

Inserting the Gaussian motion and observation models into the MAP estimate of (2.5) and

(2.8), we arrive at a nonlinear least-squares problem common to graph-based SLAM [29]:

Xk
∗ = argmin

Xk

[

‖X0 −X0
∗‖2Λ0

+
k

∑

i=1

‖xi − f(xi−1,ui−1,0)‖
2
Ωw

+

k
∑

i=1

ni
∑

j=1

∥

∥zi,j − h
(

Xj
i ,0

)∥

∥

2

Ωi,j
v

]

,

(2.9)

where the zi,j are random because they are unknown at planning time. Here, we use the

notation ‖e‖2Ω = e⊤Ωe. We can compute a linearization point for the problem by compounding

the given set of controls, yielding the nominal mean estimate X̄k(U0:k−1) = {X0
∗, x̄1, . . . , x̄k}.

Linearizing about this nominal mean estimate, the problem collapses into the following
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representation for the state update vector ∆Xk:

‖Ak(U0:k−1)∆Xk − bk(Z1:k, U0:k−1)‖
2 , (2.10)

where

Ak =









[

Λ
1
2
0 0

]

D(Ωw)
1
2Fk

D (Ωi,j
v )

1
2 Hk









, bk =







0

D(Ωw)
1
2bf

k

D (Ωi,j
v )

1
2 bh

k






. (2.11)

Here, D( · ) denotes a diagonal matrix with the specified elements, Fk and Hk are the sparse

Jacobians from the motion and observation models, respectively, and bf
k and bh

k are the

corresponding residual vectors with stacked elements

bf
i = f(x̄i−1,ui−1,0)− x̄i, (2.12)

bh
i,j = zi,j − h

(

X̄j
i ,0

)

. (2.13)

Recall that the zi,j within bh
i,j are unknown.

Solving (2.10) around the linearization point X̄k, we find the update vector as a function

of the random measurement variables:

∆Xk(Z1:k, U0:k−1) =
(

A⊤
k Ak

)−1
A⊤

k bk. (2.14)

Thus, the belief at planning step k is represented by the mean vector Xk
∗ = X̄k +∆Xk and

the associated information matrix,

Λk(U0:k−1) = A⊤
k Ak. (2.15)

The information matrix (and hence covariance) is not a function of the random measurement

values, only the information contributed by the measurements.

Maximum-likelihood Observations versus Random Observations

Many previous works considered maximum-likelihood observations in place of the random

observations we consider above in order to directly apply optimal control techniques to the

resulting belief [34, 38, 106]. Under the maximum-likelihood assumption, the measurement

residual term vanishes: bh
i,j = zi,j − h

(

X̄j
i ,0

)

= 0. In turn, the update vector equals zero,

∆Xk = 0, such that the mean vector is equivalent to the nominal estimate, Xk
∗ = X̄k. In

this way, the belief mean is deterministic, as the maximum-likelihood assumption removes
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the randomness from the formulation.

Instead, we maintain the random measurements throughout the formulation [126], such

that the residual bh
i,j and state update vector ∆Xk are both also random. This leads to a

random belief mean, Xk
∗, so we must take the expectation with respect to the measurements

in the objective function (2.2).

2.2.3 Considering Random Acquisitions

In addition to unknown measurement values, it is also unknown at planning time whether or

not each measurement will be acquired. Therefore, we introduce a Bernoulli random variable

for each measurement that models its acquisition. The set of random acquisition variables at

a given planning step k is Γk = {γk,j}
nk

j=1, where nk is the number of possible measurements

at step k. Therefore, we modify the observation model from (2.7) and use the following

Gaussian mixture model for the update measurements:

zk,j = h
(

Xj
k,vk,j(γk,j)

)

,

vk,j(γk,j) ∼ N
(

0,
(

γk,jΩ
k,j
v + (1− γk,j)Ω0

)−1
)

,
(2.16)

where Ωk,j
v is the information contributed by a successful measurement and Ω0 is the informa-

tion contributed by an unsuccessful measurement. It is easily identified that unsuccessful

measurements add zero information; that is, the second term of (2.16) vanishes, resulting in

vk,j(γk,j) ∼ N
(

0,
(

γk,jΩ
k,j
v

)−1
)

. (2.17)

Including the set of acquisition variables, the factored probability in (2.8) becomes

p(Xk|Z0,U0, Z1:k,Γ1:k, U0:k−1) ∝

p(X0|Z0,U0)
k
∏

i=1

p(xi|xi−1,ui−1)

ni
∏

j=1

p
(

zi,j|γi,j, X
j
i

)

p
(

γi,j|X
j
i

)

.
(2.18)

Online, each γi,j of interest is observed by the robot upon receiving the associated

measurement zi,j. Acquisition variables corresponding to measurements not received do not

inform the estimate of the state. But within the prediction, it is unknown which measurements

will be received ahead of time. Previous work incorporated the random acquisition variables

within an EM framework [67], but this method eliminates the randomness in the formulation

by evaluating γi,j at its mean value of p(γi,j = 1) = λi,j within the MAP estimate. Instead,

we want to maintain the randomness of the acquisition variables throughout the formulation.
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We approximate the acquisition variables as independent, and therefore uninformative to the

estimate, such that p
(

γi,j|X
j
i

)

≈ p(γi,j), allowing (2.18) to take the form

p(X0|Z0,U0)
k
∏

i=1

p(xi|xi−1,ui−1)

ni
∏

j=1

p
(

zi,j|γi,j, X
j
i

)

. (2.19)

This approach essentially borrows the rationale behind EM but delays taking the expectation

over the acquisition variables until the evaluation of the objective function (described later in

§2.2.4).

Re-inserting the Gaussian motion and observation models into the MAP estimate of (2.5)

and (2.19), the nonlinear least-squares problem becomes

Xk
∗ = argmin

Xk

[

‖X0 −X0
∗‖2Λ0

+
k

∑

i=1

‖xi − f(xi−1,ui−1,0)‖
2
Ωw

+

k
∑

i=1

ni
∑

j=1

γi,j
∥

∥zi,j − h
(

Xj
i ,0

)∥

∥

2

Ωi,j
v

]

,

(2.20)

where both γi,j and zi,j are random. Now, the compact representation for the state update

vector ∆Xk,

‖Ak(U0:k−1)∆Xk − bk(Z1:k, U0:k−1)‖
2
Gk(Γ1:k)

, (2.21)

includes the matrix of acquisition variables,

Gk =







I

I

D(γi,j)






. (2.22)

The update vector is now a function of the random measurements and the random acquisition

variables,

∆Xk(Z1:k,Γ1:k, U0:k−1) =
(

A⊤
k GkAk

)−1
A⊤

k Gkbk, (2.23)

and the associated information matrix is a function of the acquisition variables as well:

Λk(Γ1:k, U0:k−1) = A⊤
k GkAk. (2.24)

This gives us a stochastic belief as a function of the random measurements and acquisition

variables at each planning step, k. The posterior belief distribution is depicted in Fig. 2.3.
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Figure 2.3 The posterior belief distribution resulting from prediction over the planning horizon.
(a) Given maximum-likelihood measurements, the predicted belief is deterministic. (b) Including
random measurements results in a distribution of posterior beliefs. (c) Further, including a random
acquisition variable with each measurement branches the belief distribution.

(a) Maximum-likelihood measurements

(b) Random measurements

(c) Random measurements and random acquisitions

2.2.4 Objective Functions

Here we examine costs to insert into the general objective function of (2.2). We recall that

we derived the belief as a function of the random measurements and acquisition variables,

meaning we must take the expectation of the objective function with respect to these variables.

Following the literature [67, 126], we consider costs at stage k that penalize control effort

and the robot uncertainty:

ck(Bk,uk) = gu(uk) + E
Γ1:k

[

gΛ
(

Λk
−1
)]

, (2.25)
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where we leave the functions g( · ) undefined for now. The expectation is taken on the

uncertainty term because the information matrix Λk is stochastic due to the effect of the

random acquisition variables. Similarly, we can write the final cost to penalize distance from

a desired goal pose xG and the final robot uncertainty:

cK(BK) = E
Z1:K ,Γ1:K

[g
x
(xK

∗ − xG)] + E
Γ1:K

[

gΛ
(

ΛK
−1
)]

. (2.26)

The expectation is taken for the goal pose term since the mean estimate of the belief is

random, as it is a function of both the random measurements and the random acquisition

variables, evidenced in (2.23).

2.3 Planning for Visual SLAM

Here we outline how we can apply the planning formulation to the visual SLAM foundation.

Specifically, we show how we predict camera observations given a sequence of candidate

control actions and how we handle their stochasticity in registration. In this section, we

propose the use of GP regression to estimate the probability of successful registrations, or in

other words, the probability of acquisition for each measurement.

2.3.1 Camera Registration Hypotheses

In our planning formulation, the measurements zi,j stem from predicted camera registrations.

We must predict camera registrations during planning in a way that models the online

behavior of the visual SLAM system during execution. Following the work of Kim and

Eustice [79], camera registrations are predicted according to the saliency-informed visual

SLAM framework. The main components of this method are (i) retaining only visually-salient

keyframes that are capable of being registered, and (ii) reducing the number of registration

hypotheses using a measure of information gain combined with visual saliency.

This method relies on the visual saliency metrics defined by Kim and Eustice [78, 79],

including local saliency (SL). The local saliency score for an image is computed using the

entropy of a bag-of-words (BoW) histogram from a vocabulary built online and takes on values

ranging from 0 to 1 (non-salient to very salient). This score describes the texture-richness of

an image and directly correlates to its registrability (Fig. 2.1).

For predicting registrations during planning, we adapt the saliency-informed visual SLAM

framework in the following way. Given the predicted future poses {x̄1, ..., x̄k}, we search for

existing target poses in the prior SLAM pose graph that may contain spatially-overlapping

image views and that pass an initial saliency threshold (the same threshold used online during
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SLAM). Then for each target image, we compute the geometric information gain associated

with registering the target image to an image at the predicted virtual pose. Further, the

information gain is scaled according to the local saliency score at the target image. This

allows candidate registrations to be ranked according to a combined measure of usefulness

(information gain) and likelihood of registration (local saliency). As a final step in predicting

registrations, the top nk candidates at each virtual pose are selected for incorporation into

the planning formulation as measurements {zk,j}
nk

j=1.

2.3.2 Visual Saliency Prediction

The local saliency score can only be calculated for images actually captured by the robot,

and must be predicted for virtual poses defined by future control actions. Thus, estimating

successful camera registrations hinges on accurate saliency prediction. To accomplish this task,

we propose the use of GP regression to model the distribution of local saliency throughout

the environment.

Previously for the ship hull inspection environment, the perception-driven navigation

(PDN) algorithm used a simple interpolation scheme for predicting saliency scores throughout

unmapped areas [80]. However, this method has no notion of whether the predicted score is

accurate, and failure to accurately predict can lead to planned control actions that greatly

overestimate their usefulness in planning. Instead, GP regression for visual saliency prediction

is a more principled approach that accounts for the spatial distribution of visual features

to model the parameters of the acquisition variables within the planning formulation. The

variance of the prediction provided by the GP serves as a measure of accuracy for the predicted

saliency score. More information on GP regression for learning can be found in Rasmussen

and Williams [110].

Before planning, we train the GP using the captured images in association with their

robot capture poses. The training data D = {X0
∗,y} is composed of the prior poses of the

robot at the m prior capture times, X0
∗ = {xi

∗}mi=1, and the local saliency scores of the m

images, y = {SLi
}mi=1. Similar to Barkby et al. [7], we use a simple stationary covariance

function suitable for large scale data [95]:

k(xi,xj; l, σ0) =

{

σ0

(

2+cos(2πd/l)
3

(1− d
l
) + sin(2πd/l)

2π

)

, if d < l

0, otherwise,
(2.27)

where l and σ0 are hyperparameters. This covariance function achieves sparsity and scalability

by truncating values for training pairs that exceed the weighted distance d = ‖xi − xj‖MGP
=

[(xi−xj)
⊤MGP(xi−xj)]

1/2. For our application of ship hull inspection, we align the coordinate
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Figure 2.4 (a) Predicted saliency maps from GP regression at different points during an example
mission: (i) after 25% coverage with the nominal lawn-mower policy, (ii) 50% coverage, and (iii)
75% coverage. The training data is shown along the top row, with predicted saliency maps along
the bottom row. (b) The actual saliency map of the environment, for qualitative comparison.

(i) (ii) (iii)

(a) Predicted saliency maps throughout a mission from GP regression (b) Actual saliency map

frame with the survey area and choose MGP = D(1/∆2
d, 1/∆

2
h, 1, 0, 0, 0). Here, ∆d is the

distance between two along-track SLAM poses associated with the nominal exploration policy

and ∆h is the distance between two cross-track SLAM poses.

The GP prediction performance over unmapped areas is shown in Fig. 2.4. The top row

of Fig. 2.4(a) depicts the pose graph of the robot at various points throughout a mission

while following a nominal lawn-mower exploration policy. The bottom row of Fig. 2.4(a)

shows dense coverage of saliency predictions from the GP both in the future—throughout

the remaining survey area, and in the past—in unmapped areas between previously-traveled

tracklines.

Fig. 2.5 shows the mean and variance from GP prediction along a sampled trajectory,

considering the robot already surveyed five full tracklines. Fig. 2.5(b) shows that the variance

increases as the predictions transition to farther-out areas not yet reached by the robot.

Between past tracklines, the saliency prediction closely matches the actual value with small

variance, shown closer in Fig. 2.5(c). This zoomed view also compares the GP prediction

to the linear interpolation scheme from PDN in predicting mean values; however, the true

strength of using the GP is in the measure of variance it also provides.

Together, the predicted mean and variance characterize a Gaussian probability density

function (pdf) of the saliency score of a not-yet-seen image at the queried pose. The GP

prediction returns a distribution of virtual pose saliency scores at the queried pose with pdf

f(SLv
), which we transform into the censored pdf f ′(SLv

) [51]. The censored pdf1 ensures

1Censoring involves assigning values outside of the valid range to the minimum and maximum valid bounds.
This is not to be confused with truncating, which removes data outside of the valid range entirely.
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that the predicted saliency is correctly represented within the acceptable range of values

from 0 to 1. This censored saliency distribution will become useful in later chapters when we

further define the forms of the objective functions in (2.25) and (2.26). At that time, we will

show how the GP allows us to model the acquisition variables Γ1:k.

2.4 Chapter Summary

In this chapter we proposed a belief-space planning formulation that includes random

measurements and random acquisition variables. The acquisition variables are Bernoulli

random variables included in the belief prediction that model whether a sensor observation

will actually be received. We represent the belief as a Gaussian distribution and track its

evolution with the visual SLAM framework underlying our application of underwater ship

hull inspection. In addition, we proposed the use of GP regression to model the distribution

of visual saliency throughout the environment in order to accurately predict pairwise camera

registrations given future control actions. Our planning formulation performs an optimization

over a sequence of control actions with a general objective function that includes information-

theoretic components and allows us to perform autonomous decision-making under uncertainty.

The formulation from this chapter serves as the mathematical foundation for the rest of the

research presented in this document. Specifically in future chapters, we will use the proposed

planning formulation in the context of active SLAM for autonomous ship hull inspection.
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Figure 2.5 (a) The predicted saliency map from the GP along a sampled trajectory. The ‘X’
indicates the current robot location while gray dots represent the historical poses of the robot for
training the GP. The predicted saliency scores are color-coded with respect to their saliency level.
(b) Predicted mean saliency values with variance, overlaid on the true saliency scores. (c) A zoomed
view for predictions between past tracklines. Two dotted blue lines indicate the 3-σ envelope of
the prediction. Red circles are the true saliency scores and green diamonds are the interpolated
prediction used by PDN.

−20

−10

0

0
10

20
30

0

4

8

Lateral [m]Longitudinal [m]

D
e

p
th

[m
]

train

along future tracklines

current locationX

between past tracklines
start o

0

1

(a) Sampled trajectory

0 500 1000

−1

0

1

2

node idx

S
L

True

GP

between past
tracklines

along future
tracklines

zoomed view (c)

*

(b) Variance

0 200 400

0

0.5

1

node idx

S
L

True

GP

INTERP

*

(c) Zoomed view

29



Chapter 3

Sampling-based Algorithm for Active

SLAM

3.1 Introduction

This chapter presents an algorithm for active simultaneous localization and mapping (SLAM)

as applied to autonomous ship hull inspection. Our objective is to provide a robust framework

for long-term autonomous inspection in the difficult underwater environment. We consider

a robot surveying an a priori unknown target environment subject to a desired navigation

uncertainty threshold. The robot explores the target environment following a nominal

exploration policy—a strategy that ensures efficient area coverage but leads to an open-loop

trajectory without loop-closures. Without closing loops in the SLAM formulation, the robot

accumulates navigation error and its uncertainty grows unbounded. Hence, we propose an

opportunistic active SLAM framework for guiding the robot to make loop-closure revisit

actions throughout the mission.

An illustration of the proposed approach is given in Fig. 3.1. We propose the use

of sampling-based techniques combined with information filtering to search and evaluate

candidate paths throughout the environment. To model the predicted visual loop-closure

utility of unmapped areas, we employ the Gaussian process (GP) regression method of

Chapter 2. Our active SLAM framework is opportunistic in that it trades off convenience

versus necessity; it does not wait until the uncertainty threshold is reached when selecting

revisit actions to close loops in the SLAM formulation.
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Figure 3.1 Overview of the proposed active SLAM framework, demonstrated for ship hull inspection.
Given a target area and nominal exploration policy, the robot explores the environment subject
to an acceptable navigation uncertainty. We use GP regression to predict the visual saliency of
the environment and a sampling-based planning algorithm to find and evaluate loop-closure revisit
paths in order to drive down the robot’s uncertainty.

nominal 
exploration policy

target area
Gaussian process
for saliency prediction

sampling-based
planning framework

selected
best revisit path

robot pose salient

non-salient

3.1.1 Related Work

Autonomous underwater vehicles (AUVs) are commonly used for tasks like seafloor mapping

and visual inspections, so naturally there has been recent work in planning for underwater

coverage problems. Hollinger et al. [58] and Englot and Hover [37] presented advances in

coverage planning under uncertainty for inspections of three-dimensional structures. These

works consider the uncertainty in the model of the structure when planning a traveling

salesman tour of views that provide full inspection coverage.

In the context of bathymetric mapping, Galceran et al. [48] proposed a pre-planned

survey design method that orders parallel tracklines in the mission according to an initial

estimate of the environment saliency. They then propagate a particle filter over the planned

trajectory to evaluate pose uncertainty, and insert horizontal cross-tracklines whenever the

predicted uncertainty reaches a threshold. Li and Johnson-Roberson [89] presented a method

for efficient seafloor mapping by performing two passes over the environment: a high-level

survey for coarse resolution followed by an optimized low-level survey focused on improving

the mapping resolution in specific areas of interest. These methods require a rough prior map

or first pass over the target environment before planning more intelligent trajectories that

improve the mapping quality. Our approach attempts to perform efficient inspection without

a priori knowledge of the environment by planning online in conjunction with SLAM.

Our method searches for candidate actions using sampling-based planning techniques.

Sampling-based planning originates from planners like the Probabilistic Roadmap (PRM)

[76] and Rapidly-exploring Random Tree (RRT) [86], which sought to efficiently solve queries

in high-dimensional configuration spaces. These planners strictly consider completeness—the
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ability to find a path if one exists. These algorithms are probabilistically complete, meaning

that the probability of finding a feasible path if one exists goes to one in the limit of infinite

samples. Over the years, many variations of the PRM and RRT have been proposed to tailor

their operation to different applications and achieve better performance [24, 85]. One such

algorithm of interest for the work in this chapter is the transition-based RRT (T-RRT) [68].

This planner was proposed to solve queries when a costmap is defined over the configuration

space. The T-RRT uses a transition test to accept or reject samples depending on a criterion

related to the concept of minimizing mechanical work.

Karaman and Frazzoli [75] proposed the Rapidly-exploring Random Graph (RRG) and

asymptotically-optimal Rapidly-exploring Random Tree (RRT*) to extend sampling-based

planning to include the notion of optimality. These algorithms are adaptations of the PRM

and RRT that incrementally improve the shortest-distance path to the goal with guarantees

of optimality in the limit. Thus, these planners are both probabilistically complete and

asymptotically optimal. Devaurs et al. [31] merged the concepts of the RRT* and T-RRT to

propose the transition-based RRT* (T-RRT*).

Classical sampling-based planning, however, assumes deterministic states and full knowl-

edge of the environment (or configuration space). Real-world autonomous robots generally

cannot operate under these assumptions, so the general approach is to track their belief

over state by performing Bayesian inference as they move throughout the world. Sampling-

based planning was only recently extended to include notions of uncertainty associated

with probabilistic robotics. Prentice and Roy [109] presented the Belief Roadmap (BRM)

algorithm that combines the PRM with extended Kalman filtering to solve queries related

to arriving at a goal pose with minimum uncertainty. Van den Berg et al. [124] presented a

method for planning with stochastic measurements and motion that employed linear quadratic

Gaussian (LQG) control for tracking and controlling the robot and the RRT for searching

trajectories. Bry and Roy [13] developed a similar formulation that included the RRG. Both

of these approaches consider the dynamics and control of the robot in order to correctly

model the distribution required for checking collisions in point-to-point planning queries.

Hollinger and Sukhatme [57] generalized the sampling-based planning under uncertainty

approaches to accomplish information gathering. Their Rapidly-exploring Information Gath-

ering (RIG) class of algorithms seeks to maximize information-theoretic objectives subject

to a budget constraint for the trajectory. The information-theoretic objective is often sub-

modular, meaning the information available from a future action is dependent upon the prior

information already gathered. As a result, the authors proposed a conservative strategy for

pruning candidate paths in order to maintain computational tractability within the search

space.
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Research in the area of active SLAM stems from the seminal works of Bajcsy [6], Whaite

and Ferrie [135], and Feder et al. [43] and generally focuses on finding control actions to

reduce the uncertainty or maximize the information of the SLAM posterior. Bourgault et al.

[12] proposed a greedy active exploration strategy based on the competing information gain

objectives of maximizing localization accuracy and minimizing map entropy. Gonzalez-Banos

and Latombe [49] extended the next-best-view (NBV) problem from computer vision [26] to

include safe robot navigation in an unknown environment and constrained action selection

according to some minimal sensor overlap to facilitate image registration. Rather than consider

a single best action step, Sim and Roy [114] performed global active exploration using a

breadth-first search over a discrete grid and restricting trajectories to omit cycles. Stachniss

et al. [117] used a Rao-Blackwellized particle filter to efficiently track map hypotheses and

compute the information gain associated with candidate actions.

Work by Valencia et al. [122, 123] considered path planning and active SLAM using the

pose SLAM formulation that we also employ. The authors proposed a method for directly

using the resulting pose graph as a roadmap over which to plan uncertainty-aware trajectories

[123]. They also developed an active SLAM framework that computes information gain with

a coarse map representation independent of the pose SLAM estimate, and replans whenever

the estimate changes significantly [122].

Indelman et al. [67] performed active SLAM with the full SLAM formulation and a

trajectory optimization approach. Like other works interested in trajectory optimization

for active SLAM [105], these algorithms find locally-optimal solutions to a sequence of

point-to-point planning queries touring the environment.

Much of the work in this chapter builds upon the perception-driven navigation (PDN)

method presented by Kim and Eustice [80]. The PDN approach considers the same problem

formulation and application of ship hull inspection. It plans revisit actions by clustering

visually-salient poses in the SLAM graph to form waypoints, planning a saliency-weighted

direct path to each waypoint with A*, and computing a reward for traveling along each

candidate path. Our proposed algorithm improves upon this method by removing the need

for clustering while evaluating many more paths using sampling-based planning techniques.

In addition, we predict the visual saliency through the environment with the GP regression

of §2.3.2. Our algorithm is also opportunistic, unlike PDN, in that it does not wait until the

uncertainty threshold is reached to execute a beneficial revisit action.
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3.1.2 Problem Statement

We consider a robot performing pose SLAM to survey an a priori unknown environment

subject to a desired uncertainty threshold. The intention of the uncertainty threshold is to

define an acceptable quality of the large-scale ship hull inspection, where the end goal is to

produce a metrically-accurate map of the underwater portion of the ship. The inspection

problem is formulated with the following assumptions:

1. The boundaries of the target environment are given.

2. An open-loop nominal exploration policy provides dense coverage of the target envi-

ronment in efficient time (lawnmower tracklines for sensor coverage with the Hovering

Autonomous Underwater Vehicle (HAUV)).

3. The user defines the navigation uncertainty threshold as a function of the robot pose

covariance.

4. The environment is free of obstacles and the inspection surface is locally-planar. The

effects of water current, turbidity, and vehicle dynamics are assumed negligible.

5. No other prior information is provided. Planning is performed online in conjunction

with SLAM.

Considering these assumptions, the active SLAM algorithm is tasked with searching,

deciding, and executing revisit actions that guide the robot to previously-seen portions

of the environment in order to gather loop-closure camera registrations. The goal is to

bound navigation uncertainty while maintaining efficient area coverage throughout the

inspection mission. Without this type of active SLAM framework, the inspection suffers from

accumulated errors over long durations. In these cases of long open-loop behavior, modeling

inaccuracies in the SLAM system cause the robot to risk losing localization, leading to data

association difficulties when proposing loop-closures. With a lost robot, even appearance-

based approaches for closing loops consistently fail in the underwater environment [102]. Thus,

we adopt an incremental approach to bounding uncertainty by performing multiple loop-

closure actions throughout the mission. Our approach is built on the planning formulation of

Chapter 2.

3.2 Opportunistic Active SLAM

The sampling-based active SLAM algorithm in this chapter can be broken into three compo-

nents: (i) path generation, (ii) path evaluation, and (iii) path selection. Path generation
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Algorithm 1 Opportunistic Active SLAM – Intermediate Approach

Input: SLAM pose graph, exploration policy
Output: best path P∗
Initialize:

while (SLAM is not finished) do
xc = GetSlamUpdate()
if (time elapsed > ∆t) then

{xl} = ConstructLookahead()
for (candidate Ci in {Ci}) do

{f i
n} = PathGeneration(Ci, {xl})

EvaluateCandidate({f i
n})

end for

ComputeMaxCost()
UpdateBestCandidate()
DecideAndExecute()

end if

end while

considers the search for a number of candidate paths throughout the environment with a

sampling-based framework. Path evaluation consists of quantizing each of these candidate

paths according to their utility, and path selection refers to the automated process of choosing

a path from the set of candidates for the robot to execute.

On the way to presenting the proposed method, we will first outline the three-phase

structure and present an intermediate algorithm for active SLAM. This intermediate algorithm

offers simple extensions over the PDN method for active SLAM in underwater environments,

and is useful for illustrating some contributions that follow in later chapters. The final,

proposed algorithm is the focus of this chapter and examines further extensions by combining

the path generation and path evaluation phases into an integrated approach based on sampling-

based techniques and information filtering. This final algorithm is presented later in §3.3.

First, the intermediate algorithm is presented below and in Algorithm 1, as we step through

the three phases of path generation, path evaluation, and path selection.

3.2.1 Saliency-weighted T-RRT* for Path Generation

The first component of any active SLAM algorithm is to generate candidate actions that the

robot might execute [15]. PDN accomplished path generation by clustering visually-salient

poses, selecting a representative waypoint for each cluster, and planning an out-and-back

path from the current robot pose to each waypoint using A* with a saliency-weighted distance

heuristic [80]. The approach we illustrate for path generation in the intermediate algorithm is

similar, but features a number of extensions. The first difference is that we remove the need
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Algorithm 2 Opportunistic Active SLAM: Functions

Function: PathGeneration(Ci, {xl})
Pi = GetTrrts(Ci)
if (Pi does not exist) then

Pi = CreateTreeWithRevisitPose()
end if

while ({xl} not connected) do
vs = SampleVertex(Pi)
vn = GetNearestVertex(Pi, vs)
if (TransitionTest(Pi, vn, vs)) then

Connect(Pi, vn, vs)
RewireTree(Pi)

end if

TryConnect(Pi, {xl})
end while

{f i
n} = ComputeFactorsOnPath(Pi)

return {f i
n}

Function: TransitionTest(Pi, vn, vs)
(sn, ss) = GetSaliencyScores(vn, vs)
if (ss > sn) then

return True
end if

p = exp −(sn−ss)
K∗T

if (Rand(0, 1) < p) then
T = T/α
numFail = 0

end if

if (numFail > numFailMax) then
T = T ∗ α
numFail = 0

else

numFail = numFail + 1
end if

return False
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for clustering and instead sample salient poses from the existing pose graph as waypoints.

Each of these waypoints serves as a revisit pose for a candidate path.

We generate trajectories for each candidate with a saliency-weighted T-RRT*, presented in

the PathGeneration() function of Algorithm 2. This sampling-based planner can be briefly

described by the ideas it borrows from other planners [31]. At the most basic level, the

planner resembles the RRT* [75] with a rewiring scheme for improving the solution quality.

We do not adapt the radius for rewiring as a function of vertices in the tree, however, and

instead use a constant radius since our environment expands as the robot explores. The cost

assignment in the rewiring step (RewireTree()) uses the saliency-weighted distance metric

adopted from PDN:

ds(xi,xj) = (2− SLj
)‖xi − xj‖. (3.1)

The weighted distance ds(xi,xj) preserves the Euclidean distance to pose j from pose i when

the local saliency score at j is equal to one, and doubles this distance when j has zero saliency.

During tree construction, the T-RRT* uses a transition test based on visual saliency

scores before deciding whether to add a sampled vertex to the tree [31, 68]. This focuses the

growth of the tree to the areas of the environment expected to yield visual registrations. The

transition test, outlined in the TransitionTest() function of Algorithm 2, uses an adaptive

probability of accepting a sampled pose. Sampled poses with a higher saliency score than

the nearest vertex already in the tree are always accepted. The probability of accepting

sampled poses with a lower saliency score decreases exponentially with the difference in

saliency. This probability adapts according to a temperature parameter T and the number of

rejected transitions.

Each candidate maintains its own T-RRT* with a root vertex positioned at a revisit

waypoint. As samples are added to the tree during construction, the branches of the planner

follow the peaks of the visual saliency distribution throughout the environment. Round-trip

trajectories are found by climbing the tree backwards, from any leaf vertex to the root vertex,

and back. Over time, the T-RRT* for a candidate represents a bank of trajectories leading

to the revisit waypoint that are asymptotically-optimal with respect to the saliency-weighted

distance metric. In this intermediate algorithm, we maintain a set of candidates, {Ci}, each

with a distinct revisit waypoint, that enumerate the possible options for revisit actions

throughout the mission. We process these candidates in parallel to consider multiple options

at each planning event.
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Figure 3.2 The path posterior information is found by adding sources of delta information from
odometry measurements and camera registrations to the prior SLAM information. The odometry
measurements have a block-tridiagonal structure and camera registrations result in loop-closing
constraints to previous poses in the pose graph.
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3.2.2 Path Evaluation

The second phase of the active SLAM algorithm is path evaluation, where we quantize each of

the candidates according to its utility. Given a candidate path, P , we track the belief over the

candidate, represented by BP ∼ N (XP
∗,ΛP

−1). Tracking the belief is accomplished with the

formulation from Chapter 2. At the beginning of a planning event, we retrieve the linearized

snapshot of the SLAM system, B0 ∼ N (X0
∗,Λ0

−1), and determine the predicted odometry

and loop-closure measurements to incorporate into the belief associated with traveling the

candidate path.

For our visual SLAM application, we can deconstruct the belief posterior information as

the sum of the prior SLAM information, Λ0, and sources of delta information corresponding

to the expected odometry and camera registrations available along the path, such that

ΛP = Λ0 + Λodo + Λcam. (3.2)

A toy example of how the information is summed along a path is given in Fig. 3.2. An

odometry measurement, xi,i+1, is the relative-pose increment between sequential virtual poses

in the path, (xi,xi+1) ∈ P [116]:

xi+1 = xi ⊕ xi,i+1. (3.3)

Adding the expected odometry measurements along the path results in block-tridiagonal

delta information given by

Λodo =

p
∑

i=1

Fi
⊤ΩwFi, (3.4)
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Figure 3.3 The empirical probability of successful camera registration, used in (3.6). The probability
is a function of target node saliency SLt and virtual node saliency SLv .
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where Fi is the sparse Jacobian and Ωw
−1 is the covariance of the odometry model noise.

The delta information corresponding to camera registrations expected along a revisit path is

calculated by

E[Λcam] =

p
∑

i=1

ni
∑

j=1

λi,j ·Hi,j
⊤Ωi,j

v Hi,j, (3.5)

where Hi,j is the camera measurement Jacobian [77], (Ωi,j
v )

−1
is the camera measurement

noise covariance (assumed constant for convenience), and ni is the number of camera regis-

trations associated with virtual pose xi. Under the expectation, the information of a camera

registration is scaled by its probability of acquisition, λi,j.

For each predicted registration (or proposed link), we can compute its probability of

acquisition, p(γi,j = 1) = λi,j, given the saliency scores for the involved images and the

knowledge of past registration attempts. We aggregate historical camera registration data

to produce an empirical probability of successful registration as a function of target pose

saliency and virtual pose saliency for overlapping pairs, g(SLt
, SLv

), shown in Fig. 3.3 and

described further by Kim and Eustice [79]. Then, the probability of acquisition is computed

as

p(γi,j = 1) = λi,j = Ef ′ [g(SLt
, SLv

)] =

∫ 1

0

g(SLt
, SLv

)f ′(SLv
)dSLv

, (3.6)

where f ′(SLv
) is the censored predicted saliency distribution at the virtual pose resulting

from GP regression.

The belief is evaluated in an objective function designed to reflect the active SLAM
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tradeoff between minimizing navigation uncertainty and maximizing area coverage rate. The

planning objective is therefore to minimize the cost of a candidate path, computed by

J (P) = α ·
E[gΛ(ΛP)]

T
+ (1− α) ·

gu(UP)

dP
, (3.7)

where gΛ(ΛP) is a function of the terminating pose covariance of the path and used as a

measure of navigation uncertainty, and gu(UP) computes the revisit (redundant) length of

the candidate path. T is an upper bound on the acceptable uncertainty and dP is an upper

bound on the revisit path length, both defined by the user. The tuning parameter α ∈ [0, 1]

controls the balance between uncertainty and revisit distance. Throughout the experiments

in this chapter, we express the navigation uncertainty using the sixth-root of the D-optimal

determinant,

E[gΛ(ΛP)] = E

[

∣

∣ΛP
−1
∣

∣

1/6
]

≈
∣

∣E[ΛP ]
−1
∣

∣

1/6
, (3.8)

in order to yield a quantity with units of m-rad[16], though the A-optimal trace can be used

as well [114]. The expectation must be taken with respect to the random acquisition variables

since the belief is a function of these unknown variables at planning time.

Per Eustice et al. [41], we recover the terminating covariance of a candidate, Σnn, by

E[ΛP ]Σ∗n = I∗n, (3.9)

where Σ∗n and I∗n are the nth block-columns of the covariance matrix and block identity

matrix, respectively. Since the information matrix is exactly sparse for our visual SLAM

formulation, this calculation can be performed efficiently using sparse Cholesky factorization.

3.2.3 Opportunistic Path Selection

The final phase of the active SLAM algorithm is path selection, which provides online

decision-making for the robot regarding actions to execute. In our method, selecting a revisit

action along a candidate path is not triggered by breaching the uncertainty threshold as in

PDN [80]. Rather, the framework runs in conjunction with SLAM and is designed to be

opportunistic in nature, such that the selection of a revisit action at any point during the

mission is based on a tradeoff between convenience and necessity. To this end, we develop a

two-step optimization to decide whether to continue the exploration policy or divert to make

loop-closures along a candidate path:

1. we first predict the uncertainty along a look-ahead horizon to determine the maximum

cost of a revisit path the framework should accept, and
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Figure 3.4 The curve from (3.10) with β = 1000, used to determine the maximum allowable cost
of a candidate revisit path during the planning process.
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2. we then search for the candidate path with minimum cost less than this upper bound.

The look-ahead horizon is composed of the next L robot poses predicted from following the

nominal exploration policy. Incorporation of the horizon gives the framework a sense of the

expected measurements and predicted uncertainty, gΛ(Λexp), for exploring with the nominal

policy. We query the framework for Λexp in order to compute the maximum acceptable cost

for a candidate path, given by

Jmax = β

(

gΛ(Λexp)

T
−1

)

, (3.10)

where β is selected by the user. This exponential function yields a higher allowable cost as

the exploration uncertainty increases (see Fig. 3.4). When the exploration uncertainty is low,

the algorithm is restrictive when choosing paths, only selecting revisit actions if they are

convenient and very beneficial. When the exploration uncertainty is high, the algorithm is

willing to accept more costly revisit actions out of necessity. Instituting this upper bound

on candidate cost is the first step in the optimization, accomplished within the function

ComputeMaxCost().

The look-ahead horizon is also incorporated into the path generation process by designating

each pose along the horizon as a valid goal point for the T-RRT* candidates. In this way,

a valid round-trip trajectory (revisit path) is defined for each candidate when the T-RRT*

intercepts the horizon.
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The second step in the optimization is the search for the candidate with minimum cost

below Jmax, performed by the UpdateBestCandidate() function. If no candidate revisit

actions are found with cost below Jmax, exploration with the nominal policy continues. Every

∆t, we begin a new cycle of the active SLAM algorithm, which runs in parallel with SLAM

for the duration of the hull inspection mission.

3.3 Integrating Path Generation and Evaluation

The previous, intermediate active SLAM method contains some differences compared to

the PDN method. Notably, path generation is accomplished with the T-RRT*, and the

look-ahead horizon and two-step optimization contribute to an opportunistic behavior. There

are many similarities that exist, however; both methods enumerate out-and-back actions to a

limited number of revisit waypoints, and both proceed in the three distinct phases of path

generation, evaluation, and selection.

Here we present our main active SLAM framework that integrates the path generation

and evaluation phases. This integration allows us to evaluate many more candidate paths

(hundreds, typically) while maintaining relative efficiency. The key lies in combining sampling-

based techniques for path generation with information filtering for belief tracking and path

evaluation. The proposed algorithm is presented in Algorithm 3. Rather than use multiple

T-RRT*s for path generation and evaluate each candidate individually, we replace these

processes with a single roadmap that simultaneously generates and evaluates candidates

incrementally as the roadmap is constructed. This integrated approach is described below.

3.3.1 Sampling-based Graph Construction

We sample candidate paths for active SLAM using the RRG [13, 56, 75], which incrementally

builds a roadmap of vertices and edges describing the connectivity through the configuration

space of the robot. Contained at each vertex in the RRG is a list of partial candidate revisit

paths (hereafter called just candidates, denoted by Pi) that each describe a unique trajectory

over edges in the RRG to arrive at the vertex. Every candidate at every vertex is tracked by

the framework and represented by its belief mean, X∗
P = X̄P , and associated information, ΛP ,

from (3.2). The virtual poses in the mean vector, {x1, · · · ,xp}, arise from traveling along

edges, and the information matrix ΛP is the sum of the SLAM information, Λ0, and the delta

information gathered along the way. Fig. 3.5 displays an example RRG sampled on a typical

SLAM pose graph built by the HAUV during ship hull inspection.

A benefit of using the information form to track candidate beliefs is that each of the sources
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Algorithm 3 Opportunistic Active SLAM – Final Integrated Approach

Input: SLAM pose graph, exploration policy
Output: best path P∗
Initialize: vertices V = {}, edges E = {}, queue Q = {}

while (SLAM is not finished) do
xc = GetSlamUpdate()
if (time elapsed > ∆t) then

{xl} = ConstructLookahead()
ComputeMaxCost()
while (computation time remains) do

xsample = SamplePose()
vnew = ExtendToNearest(xsample)
Vnear = FindNearVertices(vnew)
for (all vk in Vnear) do

E = E ∪ {Connect(vk, vnew), Connect(vnew, vk)}
Q = Q ∪ {all P at vk}

end for

while (Q is not empty) do
ProcessQueue()

end while

EvaluateFinishedCandidates()
UpdateBestCandidate()

end while

DecideAndExecute()
end if

end while

Function: ExtendToNearest(xi)
vnearest = FindNearestVertex(xi)
vnew = SteerToward(xi, vnearest)
V = V ∪ vnew
E = E ∪ {Connect(vnearest, vnew), Connect(vnew, vnearest)}
Q = Q ∪ {all P at vnearest}
return vnew

Function: ProcessQueue()
Pparent = Pop(Q)
for (all vneighbor of v(Pparent)) do

Pchild = PropagateCandidate(eneighbor,Pparent)
if (not PruneCandidate(vneighbor,Pchild)) then

AddCandidateToVertex(vneighbor,Pchild)
Q = Q ∪ Pchild

end if

end for
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Figure 3.5 An example RRG sampled over a typical SLAM pose graph from a ship hull inspection.
Black lines represent edges between vertices in the RRG.

of delta information from (3.2) can be divided into multiple components and attributed to

the edges from which they originate. In this way, the total delta information for a candidate

is simply the sum of the delta information contributed by each edge that it travels. Hence,

(3.2) can be rewritten as

ΛP = Λ0 + Λ1
edge + . . .+ Λne

edge, (3.11)

where

Λi
edge = Λi

odo + Λi
cam, (3.12)

and Λi
edge represents the delta information matrix encoded by the odometry and camera

registration factors arising from the edge. A key insight is that the delta information Λi
edge

only needs to be computed once during construction, and is additively applied to a candidate’s

information when the edge is traversed. This benefit of the information form was alluded to

by Valencia et al. [123] and is analogous to the one-step transfer function used by the BRM

[109]. Edge construction is accomplished within the Connect() function of the proposed

algorithm.

3.3.2 Candidate Propagation and Pruning

As the RRG is built, the algorithm grows a tree of candidates over the roadmap, where

candidates can be thought of as leaves of the tree. The root of the tree is initialized at the

most recent SLAM pose with initial information Λ0. New leaves are generated by creating

a new vertex from a sampled pose in the configuration space (vnew), connecting nearby
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vertices (Vnear) to the new vertex with new edges, and propagating the candidates from

the nearby vertices over the new edges and recursively throughout the rest of the graph.

Propagating a candidate over an edge (and hence creating a new leaf) amounts to branching

the candidate (parent leaf) from the edge source vertex, creating a new candidate (child

leaf) at the destination vertex, and calculating the child information by adding the delta

information from the edge to the parent leaf information. Without pruning leaves, the tree

encodes every possible path through the graph to reach any vertex from the root.

However, the number of candidates tracked by the framework can quickly become too

large for computational feasibility. It is logical to prune leaves of the tree that are not useful

given the objective. A conservative pruning strategy would eliminate only suboptimal leaves

from the tree [13, 56], but we are willing to employ a more aggressive heuristic that sacrifices

optimality for a large increase in speed, as suggested by Hollinger and Sukhatme [56] for

submodular objective functions. Thus, we maintain a partial ordering of candidates at each

vertex according to the distance and uncertainty metrics of (3.7):

Pa > Pb ⇔ gu(UPa
) < gu(UPb

) ∧ gΛ(ΛPa
) < gΛ(ΛPb

) + ǫ, (3.13)

where ǫ is a small factor to aid in pruning when the candidates are quite similar [13]. When

(3.13) is true, candidate Pb has both a longer revisit distance and a higher uncertainty than

Pa, so Pb can be pruned from the vertex, as well as its children.

3.3.3 Opportunistic Path Selection

Like the intermediate algorithm, we opportunistically select paths using the two-step opti-

mization that includes the look-ahead horizon and maximum acceptable cost for a candidate.

However, in this final proposed framework the look-ahead horizon incorporates differently

into the path generation process. Here, we add the poses in the horizon as vertices in the

RRG and designate each as a valid goal point, such that the algorithm searches for candidates

that divert from, and return to, the nominal exploration policy. (The horizon represents the

next L steps of the nominal exploration policy. We used L = 100 in the hybrid simulation

experiments, corresponding to a 20 m horizon. During field trials, the horizon corresponded to

the length of an entire trackline.) From here, the algorithm proceeds with RRG construction

and candidate path propagation.

For computing the maximum acceptable cost of a candidate in (3.10), we used β = 1000

in hybrid simulation and β = 20 in field trials.
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3.3.4 Implementation Details

The computational complexity of the proposed algorithm can be roughly attributed to three

sources: construction of the RRG, propagation of candidates throughout the RRG, and the

evaluation of the cost of candidates for pruning and best path selection. The complexity of the

construction phase is well-documented [75], although we include the additional computation

required to predict the measurements available along each edge. Similarly, Hollinger and

Sukhatme [56] present the complexity of propagating candidates throughout the RRG, which

is exponential in the worst case but tractable for aggressive pruning strategies like the one we

propose. Evaluation of the cost of a candidate using the Cholesky decomposition is generally

O(n3), where n is the dimension of the information matrix, but lower with methods for sparse

systems. A helpful feature of the incremental sampling-based nature of the algorithm is that

it finds solutions quickly but searches to improve the best path as computation time remains.

Below we describe some implementation techniques to help reduce overall computation

time, in addition to common methods like biasing the sampling toward salient regions or

adjusting parameters related to RRG connectivity and pruning aggressiveness.

Edge Marginalization

When an edge is traversed during propagation, the size of the candidate’s information matrix

grows proportional to the number of virtual poses added by the edge. For example, an edge

adding five 6-degree of freedom (DOF) virtual poses to a candidate path adds five odometry

factors to the pose graph and grows the candidate information matrix by 30 rows and columns.

To alleviate this growth and leverage the information form parameterization, we can use

marginalization to significantly reduce the dimensionality of the delta information of an edge

during its construction.

Consider the example edge shown in Fig. 3.6(a); rather than explicitly representing all

the factors along the edge, we condense their combined delta information (Λi
edge) into a single

n-ary factor by marginalizing out the intermediate poses in the edge (i.e., edge poses that are

not the source or destination). The single factor is represented by the marginalized delta

information, Λi
marg, which replaces Λi

edge but induces the exact same information into the

factor graph. The marginalized delta information is found in the usual way via the Schur

complement,

Λi
marg = Λi

aa − Λi
abΛ

i
bb

−1
Λi
ba, (3.14)

where a represents the source and destination poses (as well as states from target poses

corresponding to expected camera registrations) and b represents intermediate poses on the

edge. This process is visualized in Fig. 3.6(a). Then, for implementation, (3.11) takes the
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Figure 3.6 (a) The factor graph and delta information matrix arising from an edge before (top,
Λedge) and after marginalization (bottom, Λmarg) during construction. (b) The algorithm builds the
posterior information incrementally from the sources of delta information arising from each edge
in the path. The marginalization technique reduces the complexity of path evaluation within the
algorithm.
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final form,

ΛP = Λ0 + Λ1
marg + . . .+ Λne

marg, (3.15)

where ne is the number of edges traversed by the candidate.

As a result of this marginalization, a candidate’s mean and information are augmented

by only one new virtual pose upon traversing an edge, no matter how many virtual poses it

originally contained.

Parallel Evaluation

In our C++ implementation of the algorithm, propagation and evaluation of a candidate path

over an edge averages 33.2 ms for representative missions like those in §3.4 and §3.5. Roughly
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80% of this time is due to calculating the terminating covariance via Cholesky factorization

of ΛP . We can achieve significant speed-up by parallelizing evaluations of candidates within

ProcessQueue() by performing the necessary Cholesky factorizations across multiple threads.

For the USCGC Escanaba field trials presented in §3.5.2 that used this parallel implementation,

the equivalent timing for propagation and evaluation of a candidate path was reduced to an

average of 9.0 ms.

3.4 Hybrid Simulation Results

We tested the proposed active SLAM framework both in a hybrid simulation environment,

presented here, and in real-world field trials with the HAUV, presented in the next section.

The hybrid simulation incorporates real-world data collected in field trials but simulates the

path traveled by the robot. In particular, the hybrid simulation presented here uses data

collected during a ship hull inspection of the SS Curtiss by the HAUV in February 2011.

More information about this experimental setup and dataset can be found in the work by

Kim and Eustice [80].

3.4.1 Synthetic Saliency Environment

The first simulation features real odometry and depth measurements collected by the robot

but uses synthetic imagery, such that salient and non-salient portions of the environment

are assigned by the user. We compare the proposed active SLAM method against three

other methods: an open-loop survey with no revisit actions, a preplanned deterministic

strategy with revisit actions along every trackline, and PDN [80]. The deterministic case is

simulated twice—over an optimistic salient region of the environment and over a pessimistic

non-salient region. In all scenarios, the robot follows the same nominal exploration policy

and the compared planning methods determine when to make diversions and which revisit

paths to take.

Results from the synthetic saliency simulation are shown in Fig. 3.7. While the path

length of the deterministic method is inherently long, its performance at bounding the

uncertainty of the robot is completely dependent upon whether the preplanned revisit paths

travel a salient region. As such, we see its two extremes of the spectrum: a salient case

that serves as a good baseline for “best-possible” uncertainty performance, and a non-salient

case that underperforms even the open-loop survey. Considering the problem formulation of

operating in an a priori unknown environment, the selection of salient preplanned revisits,

and hence the performance of this method, are left completely up to chance.
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Table 3.1 Summarized Results

Method Path Length [m] Avg. Uncertainty [% of T ]

Hybrid Simulation—Synthetic Saliency

Open-loop 386.5 121.8
DET (non-sal) 885.2 151.7
DET (sal) 876.2 33.4
PDN 583.3 71.3
Proposed 524.5 42.5

Hybrid Simulation—Real Imagery

Open-loop 386.5 121.8
DET 865.8 64.3
PDN 527.2 67.2
Proposed 557.3 53.7

MHL Field Trial 1

Open-loop 124.1 111.8
Proposed 233.1 61.0

MHL Field Trial 2

Open-loop 77.2 99.3
DET 271.3 199.3
Proposed 124.5 60.4

USCGC Escanaba Field Trial 1

Open-loop 109.8 97.2
DET 203.9 55.3
Proposed 214.3 56.2

USCGC Escanaba Field Trial 2

Open-loop 94.4 90.0
DET 163.0 67.3
Proposed 169.8 63.8

PDN identifies salient areas of the environment online and thus performs well regarding

path length and uncertainty. However, it is a näıve framework that only enumerates a few

candidate revisit paths and simply waits until the uncertainty threshold is breached before

gathering loop-closures. In contrast, the opportunistic nature and sampling-based approach

of the proposed method evaluates hundreds of candidate paths for revisiting at any point

during the mission. As a result, the proposed method outperforms the deterministic and PDN

methods in terms of path length and results in uncertainty levels similar to the “best-possible”

deterministic case. Summarized statistics for the hybrid simulations (and all field trials) are

presented in Table 3.1.
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Figure 3.7 Hybrid simulation results with the synthetic saliency environment. The non-salient
deterministic strategy (a) (b) results in no loop-closures and underperforms even the open-loop
survey. Both PDN (c) (d) and the proposed method (e) (f) constrain the navigation uncertainty
with loop-closures throughout the mission. The uncertainty versus path length plots are shown in
(g). SLAM poses in the trajectory plots are color-coded by their visual saliency, from red (salient)
to blue (non-salient). Visual loop-closures are represented by red links on the time elevation plots.
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Figure 3.8 Hybrid simulation results using real imagery collected by the HAUV while surveying
the SS Curtiss. The deterministic strategy (a) (b) results in an unnecessarily long path length.
PDN (c) (d) results in the shortest path length but the proposed method (e) (f) yields the lowest
average uncertainty for the mission. The uncertainty versus path length plots are shown in (g).
Visual loop-closures are represented by red links on the time elevation plots.

−30

−20

−10

0

10

10 20 30

0
2
4
6
8

Lateral [m]
Longitudinal [m]

D
e

p
th

[m
] 0

1

(a) Trajectory—DET

−20
−10

0

10
20

30

0

500

1000

1500

2000

Longitudinal [m]Lateral [m]

N
o
d
e

in
d
e
x

(b) Time Elevation

−30

−20

−10

0

10

10 20 30

0
2
4
6
8

Lateral [m]
Longitudinal [m]

D
e

p
th

[m
]

(c) Trajectory—PDN

−20
−10

0

10
20

30

0

500

1000

1500

2000

Longitudinal [m]Lateral [m]

N
o

d
e

in
d

e
x

(d) Time Elevation

−30

−20

−10

0

10

10 20 30

0
2
4
6
8

Lateral [m]
Longitudinal [m]

D
e

p
th

[m
]

(e) Trajectory—Proposed

−20
−10

0

10
20

30

0

500

1000

1500

2000

Longitudinal [m]Lateral [m]

N
o

d
e

in
d

e
x

(f) Time Elevation

0 100 200 300 400 500 600 700 800 900
Path Length [m]

0.0

0.5

1.0

1.5

2.0

2.5

Ro
bo

tU
nc

er
ta
in
ty

[fr
ac

tio
n
of

th
re
sh

ol
d]

Open-loop
DET
PDN
Proposed

386.5 m

865.8 m

527.2 m

557.3 m

uncertainty threshold

(g) Uncertainty vs. Path Length

51



Figure 3.9 (a) The HAUV, developed by Bluefin Robotics, in the water before field testing. (b) The
HAUV performing a seafloor survey in the physical modeling basin at the University of Michigan’s
Marine Hydrodynamics Laboratory. (c) The USCGC Escanaba, used for hull-relative inspection
field trials. Image from U.S. Coast Guard at coastguard.dodlive.mil.

(a) HAUV (b) Physical modeling basin at MHL (c) USCGC Escanaba

3.4.2 Real Image Data

Here we present results using the hybrid simulation with the real imagery collected during the

SS Curtiss inspection. Images from the dataset densely cover the entire target environment,

as shown in Fig. 2.1. We use the same nominal exploration policy as the previous simulation

but instead use the real camera images recorded by the robot to calculate saliency scores and

attempt loop-closure registrations. The proposed algorithm is again compared to the three

other active SLAM methods. Results are presented in Fig. 3.8.

This time, the deterministic revisits happen to travel portions of the environment that

yield some camera registrations, but none that significantly drive down the uncertainty. PDN

slightly outperforms the proposed method in overall path length. (Notice, though, that PDN

is very close to triggering the execution of a fourth revisit action at the end of the mission.)

Still, the proposed method results in an average uncertainty along the exploration trajectory

that is 20% lower than the PDN result with less than 6% increase in path length.

3.5 Real-world Field Trials

In addition to the hybrid simulations, we tested the proposed framework in real-world field

trials with the HAUV. We applied the framework to two different types of inspections

with the robot: seafloor surveys of a long, narrow basin, and hull-relative surveys of a

U.S. Coast Guard cutter. Details of these field trials are presented below and results are

summarized in Table 3.1. Table 3.2 reports the algorithm parameters used in field testing.

All parameters were selected to illustrate sufficient operation of the proposed method in the

target environment.
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Table 3.2 Parameters for Field Trials

MHL Escanaba 1 Escanaba 2

α 0.9 0.9 0.75
β 20 20 20
T [m-rad] 4× 10−5 6× 10−5 6× 10−5

dP [m] 40 100 100

3.5.1 MHL Seafloor Surveys

We used the HAUV and the proposed framework to survey the floor of the physical modeling

basin at the Marine Hydrodynamics Laboratory (MHL) at the University of Michigan, seen

in Fig. 3.9(b), in May 2014. The physical modeling basin is over 100 m long, 6 m wide, and

3 m deep. For seafloor surveys, the HAUV is configured with both the Doppler velocity

log (DVL) and underwater camera facing downward and a nominal exploration policy similar

to those for hull-relative surveys—to cover the target area in an open-loop fashion with back

and forth tracklines. We performed these surveys with the HAUV operating just below the

waterline and limited the target area to a (roughly) 15 m section of the basin.

Since the basin is a very salient environment, images acquired almost anywhere are useful

for making camera registrations. To increase the difficulty of making loop-closure registrations

and obtain scenarios that better illustrate the applicability of our approach, we blurred the

imagery in some portions of the basin to degrade its quality. Blurring occurred in specific

areas of the basin according to an independent estimate of the robot pose from an AprilTag

fiducial marker [99] observed through the HAUV’s periscope camera. By controlling the

image quality, we uniquely tailored the saliency of the environment for two sets of field trials.

For the first set of trials at MHL, we blurred the imagery in the environment in offsetting

rectangular regions. This resulted in alternating salient and non-salient areas of the basin

as seen in Fig. 3.10(b). We tested the proposed framework against the open-loop nominal

policy in this set of trials, with results shown in the left column of Fig. 3.11. Some small

cross-track loop-closures are made during the open-loop survey, but none that prevent the

navigation uncertainty from growing unbounded. The planning algorithm within the proposed

framework efficiently bounds the uncertainty by selecting revisit paths that weave through

the salient patches of the environment and avoid non-salient patches. The proposed method

does result in an overall path length nearly twice as long as the open-loop case, however.

The environment for the second set of field trials at MHL consisted of a single salient band

running lengthwise along the edge of the basin, shown in Fig. 3.10(c). For this set of trials, we

compared the proposed framework against the open-loop policy and a deterministic strategy
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Figure 3.10 The experimental setup for the field trials at MHL. (a) The open-loop trajectory
resulting from following the nominal exploration policy. (b) The environment saliency for the first
set of trials. (c) The environment saliency for the second set of trials.

−24

−22

−20

−18

0 5 10 15
Longitudinal [m]

L
a

te
ra

l
[m

]

0

1

(a) Trajectory—Open-loop

−24

−22

−20

−18

0 5 10 15
Longitudinal [m]

L
a

te
ra

l
[m

]

non-salient

salient

(b) Saliency for First Trials

−22

−20

−18

0 5 10
Longitudinal [m]

L
a

te
ra

l
[m

]

non-salient

salient

(c) Saliency for Second Trials

with preplanned revisit actions along every other trackline. Once again, the preplanned

actions travel a non-salient portion of the environment and the deterministic strategy performs

poorly, with large uncertainty growth and extremely long path length. The time elevation

graph of Fig. 3.11(b) shows zero large loop-closing camera registrations. Contrastingly, the

resulting trajectory from the proposed framework shows loop-closures spread uniformly

throughout the mission, as revisit actions are performed within the salient portion of the

environment. Compared to the deterministic case, the proposed method surveyed the target

area with a 54% shorter path length and 70% lower average navigation uncertainty. Even if

the deterministic strategy happened to travel the salient portion of the basin, the path length

would be equivalent to the deterministic result shown. Refer to Table 3.1 for a summary of

results.

3.5.2 USCGC Escanaba Hull-relative Surveys

The proposed active SLAM framework was also tested while visually inspecting the hull of the

USCGC Escanaba in Boston, MA in October 2014. The USCGC Escanaba (WMEC-907) is

82 m in length with a beam of 12 m and draft of 4.4 m. For hull-relative missions, the HAUV
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Figure 3.11 Results from field trials performed in the MHL physical modeling basin at the
University of Michigan. Results pertaining to the first set of trials is shown in the left column
and the second set of trials in the right column. In the first set of trials, small cross-track camera
registrations are made during the open-loop survey (a), but none contribute to a large reduction
in uncertainty. The proposed method (c) produces revisit paths that weave through the salient
patches in the environment. In the second set of trials, the deterministic strategy results in zero
large loop-closures as the preplanned revisit paths travel the non-salient portion of the environment.
The proposed framework (d) results in visual loop-closures spread throughout the mission. The
uncertainty versus path length plots are shown in (e) and (f). Visual loop-closures are represented
by red links on the time elevation plots.
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travels along the underwater portion of the ship hull and actuates the DVL and underwater

camera such that they always point normal to the hull surface. Two sets of experiments were

performed on a section of the hull situated between the stabilizer fin and bow of the ship.

Each set of trials included surveys using the open-loop, deterministic, and proposed active

SLAM strategies.

Results from the first set of trials on the USCGC Escanaba are given in Fig. 3.12. The

preplanned deterministic strategy revisits a waypoint placed on the first trackline of the

mission through a salient patch along the hull. From the time elevation graph in Fig. 3.12(d),

it can be seen that the deterministic case relies on large loop-closures near the beginning of

the mission to bound the navigation uncertainty. The proposed method yields a trajectory

with loop-closures distributed throughout the salient portions of the environment. Both

strategies, however, produce favorable end results—with nearly identical average uncertainties

well below the acceptable threshold and path lengths within 11 m of each other.

The second set of field trials on the USCGC Escanaba were performed at a time of day

when variable sunlight penetrating the water affected the imagery collected by the HAUV,

specifically relating to the salient patch located about 4 m deep. This variability is evidenced

by the trajectories and time elevation plots shown in Fig. 3.13 compared with those in

Fig. 3.12. Still, the deterministic and proposed methods perform favorably with respect to

uncertainty and path length, shown in Fig. 3.13(j). In this set of trials, the proposed method

selects revisit actions solely along the deepest portion of the environment, where the imagery

is less affected by sunlight but still possesses good loop-closure utility. Here, the proposed

method results in a slightly lower average uncertainty than the deterministic method.

3.6 Discussion

3.6.1 Performance of Planning Events

Here, we further investigate the planning algorithm within the proposed framework. For the

USCGC Escanaba field trials, we report detailed performance statistics for each planning event

in Table 3.3. The second and third columns of this table report the number of candidate plans

propagated (the number of calls to PropagatePath() in Algorithm 3) and the number of

candidates processed, or popped off the queue (calls to Pop(Q) in Algorithm 3), respectively.

Timing statistics are reported in the fourth and fifth columns. The fourth column displays

the total time spent planning for an event (triggered to exit after 20 s, upon completion of the

current iteration). In the fifth column, the timing results for best path selection show that the

sampling-based algorithm often returns a viable solution quickly, and can use any remaining
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Figure 3.12 Results from the first set of field trials performed while surveying the USCGC Escanaba

in Boston, MA. The open-loop survey is shown in (a) and (b). The deterministic strategy (c)
(d) relies on large loop-closures near the beginning of the mission to bound the uncertainty. The
proposed method (e) (f) yields a trajectory with loop-closures throughout the salient portions of
the environment. Sample images from the deterministic and proposed strategies are displayed in
(g), (h), and (i). The uncertainty versus path length plots are shown in (j). Visual loop-closures are
represented by red links on the time elevation plots.

−20

−15
−10

−5
0

0

2

4

6

Lateral [m]Longitudinal [m]

D
e

p
th

[m
]

0

1

(a) Trajectory—Open-loop

−18
−16

−14
−10

−5
0

0

200

400

Longitudinal [m]Lateral [m]

N
o
d
e

in
d
e
x

(b) Time Elevation

−20

−15−10
−5

0

0

2

4

6

Lateral [m]Longitudinal [m]

D
e

p
th

[m
]

IMG D1

(c) Trajectory—DET

−20

−15 −10
−5

0

0

200

400

Longitudinal [m]Lateral [m]

N
o
d
e

in
d
e
x

(d) Time Elevation

−20

−15−10
−5

0

0

2

4

6

Lateral [m]Longitudinal [m]

D
e

p
th

[m
]

IMG P1

IMG P2

(e) Trajectory—Proposed

−18
−16

−14
−10

−5
0

0

200

400

600

Longitudinal [m]Lateral [m]

N
o

d
e

in
d

e
x

(f) Time Elevation

(g) IMG D1

(h) IMG P1

(i) IMG P2

0 50 100 150 200 250
Path Length [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ro
bo
tU
nc
er
ta
in
ty
[fr
ac
tio
n
of
th
re
sh
ol
d]

Open-loop
DET
Proposed

109.8 m

203.9 m

214.3 m

uncertainty threshold

(j) Uncertainty vs. Path Length

57



Figure 3.13 Results from the second set of field trials performed while surveying the USCGC

Escanaba in Boston, MA. The open-loop survey is shown in (a) and (b). The deterministic strategy
(c) (d) still makes loop-closures despite imagery affected by variable sunlight during the mission. The
proposed method (e) (f) selects revisit paths at the deepest part of the environment where sunlight
has less effect on the imagery. Sample images from the deterministic and proposed strategies are
displayed in (g), (h), and (i). The uncertainty versus path length plots are shown in (j). Visual
loop-closures are represented by red links on the time elevation plots.
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Table 3.3 USCGC Escanaba Planning Events

Plan

No.

No. Candidates

Propagated Processed

Time Elapsed [s]

Total Best Path

Action

Selected

Predicted

Uncertainty

[% of T ]

USCGC Escanaba Field Trial 1

1 2524 862 4.8 0.344 Revisit 45.3
2 3528 1211 10.3 0.144 Explore 67.5
3 3445 1247 13.2 0.449 Revisit 43.8
4 2856 1238 23.0 0.262 Explore 64.9
5 3452 1185 21.3 12.526 Revisit 42.9
6 2442 991 20.6 0.270 Explore 68.5
7 2100 944 20.1 12.909 Revisit 50.3
8 1724 726 23.3 0.302 Explore 66.4
9 1866 694 20.6 0.396 Revisit 46.3
10 976 459 20.5 0.576 Explore 60.2

USCGC Escanaba Field Trial 2

1 1602 661 2.7 1.206 Revisit 47.8
2 3074 945 8.9 6.960 Revisit 59.6
3 3442 1244 21.6 8.054 Revisit 51.6
4 2233 963 19.2 0.540 Revisit 55.1
5 1729 749 20.1 0.286 Explore 66.1
6 2377 973 23.2 4.884 Revisit 59.3
7 1031 503 20.4 3.414 Revisit 50.0
8 1361 695 20.3 0.337 Explore 72.8

time to search for improvements. The average time to find the selected best path is 2.992 s

for these events. Other statistics reported include the resulting action and the predicted

uncertainty of the selected best path. Regardless of the resulting decision—following the

nominal exploration policy or diverting from this policy to gather loop-closure registrations—

the planning process relies upon accurate prediction of the information expected along

candidate paths.

Fig. 3.14 displays the results of the predictions from each plan for the hull-relative field

trials. The predicted path length and uncertainty of the selected best path from each planning

event is overlaid on the actual data recorded. It can be seen that the planner accurately

predicts the performance of the actual robot during the survey. These results support the

planning formulation of Chapter 2 and evaluation method of §3.2.2. The statistics validate

the method of using GP regression for saliency prediction and scaling camera information in

(3.5) to accurately capture the stochasticity of achieving registrations (when the number of

link proposals is large).
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Figure 3.14 The actual robot uncertainty and path length versus the robot uncertainty and path
length as predicted by the active SLAM algorithm at the time of planning, for the field trials on the
USCGC Escanaba. The predicted outcomes for each planning event align very well with the actual
data collected by the robot. Black diamonds represent selected revisit actions and white diamonds
represent selecting continued exploration.
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3.6.2 Parameter Discussion

The proposed method includes a number of tunable parameters to provide the user with finer

control and aid in transferring the system to other applications and domains. We discuss

some of the more important parameters here.

The uncertainty threshold T is a function of the robot pose covariance. In this paper,

it is set to a value that illustrates sufficient performance of the system over the duration of

our experiments. In the future, however, we intend for this threshold to be set according

to a measure of the resulting SLAM map quality. Note, though, that setting the threshold

too low can lead to losing the opportunistic nature of the algorithm since there may be no

freedom in selecting continued exploration with each planning event.

The path cost tuning parameter α controls the preference for choosing paths within each

planning event. A value of α near 1 means that paths with the most beneficial drops in

uncertainty are preferred over paths with shorter revisit lengths. An α near 0 means that

shorter diversions are preferred even if the uncertainty benefit is minimal. If the utility of
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the environment allows, setting α near 1 generally causes the robot to execute fewer, larger

loop-closure actions that drop the uncertainty well below the threshold. Setting α near 0

causes the robot to gather many small loop-closures to minimally satisfy the uncertainty

constraint.

The parameter β defines the degree to which the algorithm is opportunistic. Setting

β = 1 provides a linear relationship to govern acceptable loop-closure actions with respect to

the robot’s exploration uncertainty and the uncertainty threshold. The opportunistic nature

of the algorithm decreases as the value of β is increased, such that a very high β causes

the robot to select revisit actions only when the uncertainty threshold is reached. For our

experiments, we found that β ∈ [10, 10000] reflected sensible opportunistic behavior. Refer to

Fig. 3.4 for more information on β.

3.7 Chapter Summary

In this chapter, we proposed a comprehensive active SLAM framework for underwater ship

hull inspection. We presented a path planning algorithm integrated with SLAM in order

to find and execute loop-closure revisit actions for a robot exploring an a priori unknown

underwater environment subject to an acceptable uncertainty threshold. We combined a

sampling-based planning approach for efficiently exploring the configuration space with the

planning formulation of Chapter 2 for tracking beliefs over candidate revisit paths. Finally,

we developed an opportunistic approach for selecting the best revisit path that allows the

robot to autonomously execute useful loop-closure actions at any point during the mission,

while still exploring the target area in efficient time. The proposed method was demonstrated

using a hybrid simulation with both synthetic and real camera imagery, and using real-world

field trials of a robot performing seafloor and hull-relative visual inspections. The results

showed that, on the whole, our framework offers many benefits over other representative

active SLAM methods: principled and accurate saliency prediction, the ability to search

and evaluate hundreds of candidate paths, opportunistic path selection, and consistent good

performance over our experimental trials. This type of active SLAM system is useful to

accomplish robust, long-term autonomy in marine environments.
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Chapter 4

Efficient Planning through

Compression and Structure

4.1 Introduction

Simultaneous localization and mapping (SLAM) has been successful in recent years for mobile

robots operating in a wide variety of challenging environments [60]. However, solving the

SLAM problem becomes increasingly expensive as the number of poses in the graph grows

with space and time [102]. This computational complexity is compounded within active

SLAM—a planning algorithm typically evaluates many possible candidates before selecting

one to execute. Each of these evaluations entails solving a simulated SLAM system by

predicting the belief of the robot given a sequence of control actions and incorporating the

expected measurements along the way, as we outlined in Chapter 2. Thus, SLAM complexity

can be a barrier to achieving online planning for autonomous robotic tasks.

In this chapter, we show that planning for active SLAM has potential in (i) compressing

the representation to form an approximate distribution, and (ii) leveraging the structure

of the problem, in order to evaluate candidate plans efficiently. We propose these ideas by

investigating state-of-the-art algorithms from the SLAM community and applying them to

the planning problem. First, we propose online graph sparsification through generic linear

constraints (GLCs) [14] to compress the representation of the SLAM system in order to

perform active SLAM evaluations with a smaller, approximate distribution. Second, we

propose the use of the Bayes tree data structure [74] to track the SLAM system and design

an active SLAM framework that takes advantage of unique characteristics of the Bayes tree

when planning. These ideas are both motivated by a common goal—to improve the efficiency

of expensive information-theoretic evaluations within active SLAM.
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4.1.1 Related Work

Active SLAM and related belief-space planning problems consider information-theoretic

objective functions to make decisions about control actions the robot should execute [67, 126,

134]. For Gaussian beliefs, evaluating this objective is very expensive however, as it generally

involves inverting the associated information matrix and recovering covariance entries. Active

SLAM methods in the past have have dealt with expensive evaluations by either considering

a small number of candidates [80, 117, 122], approximating the problem by compressing the

representation [66, 122], or aggressively pruning the search space [20, 57]. These approaches

often solve SLAM as a batch operation, for example by constructing the information matrix

and performing Cholesky decomposition [20, 67, 80].

Research in SLAM to reduce computational complexity is largely motivated by extending

the standard formulation to better handle long-term applications that cover large environments

or long durations. To address increasing computation, many recent works have sought to

find efficient solutions by constructing approximate distributions of the full SLAM system.

These works reduced computational overhead in the approximate distributions by enforcing

sparsity in the information matrix or removing pose nodes to decrease the dimensionality of

the pose SLAM system.

Thrun et al. [120] enforced sparsity in the information matrix by removing weak links

(i.e., those with little information content). Vial et al. [128] enforced sparsity by performing

an optimization to minimize the Kullback-Leibler divergence (KLD) between the original

information matrix and an information matrix with a prescribed sparsity pattern. Their

method also ensured that the approximate distribution is conservative.

Other works used pairwise measurement composition to remove nodes from the SLAM

graph [70, 82, 83]. Unfortunately, measurement composition results in inconsistent estimates

and is not well-defined for graphs with low-rank measurements. Instead of measurement

composition, Folkesson and Christensen [45], Huang et al. [62], and Carlevaris-Bianco et al.

[14] proposed methods for removing poses and replacing the corresponding measurements

with linearized potentials over the elimination cliques. These methods avoid the disadvantages

of measurement composition and can be augmented to produce sparsity (for instance, with a

Chow-Liu tree (CLT) [14]).

In this chapter, we use a state-of-the-art graph sparsification method called GLC [14].

GLC performs marginalization to remove nodes from a SLAM graph but replaces the removed

factors with an equivalent n-ary factor that induces the exact same information into the

graph. To maintain sparsity, GLC can instead produce a set of unary and binary factors that

form an approximate sparsified distribution. This method features many advantages over

other similar sparsification methods. For example, GLC is able to handle low-rank constraints
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and does not double-count information. It scales well to removing nodes in large graphs

because it depends only on the size of the elimination clique and the information contained

within the corresponding factors. Also, GLC allows for relinearization within standard SLAM

optimizers by optionally expressing each linear factor with a local-frame linearization.

Recently, Indelman [65, 66] proposed using a conservative approximation for information-

theoretic decision-making. He showed that operating on a decoupled conservative distribution

is guaranteed to produce the same decision-making results as operating on the original distri-

bution under certain circumstances, like in typical sensor deployment problems. Motivated

by this concept, we show that using GLC to create a sparsified approximate distribution

allows us to plan over a multi-step horizon in active SLAM while achieving computational

savings and maintaining the same decision-making performance as planning with the original

distribution.

Aside from research in compressing the representation, other work in solving SLAM effi-

ciently has examined the structure of the problem. Considering the linear algebra perspective,

Kaess et al. [73] used QR factorization of the measurement Jacobian instead of Cholesky

factorization of the information matrix. A benefit of this approach is that the solution can

be incrementally updated as new measurements arrive by applying Givens rotations directly

to the square-root information matrix. From the upper triangular form, the SLAM solution

is easily found by backsubstitution.

Loop-closures in SLAM directly correspond to updates in the square-root information

matrix that cause significant fill-in (additional nonzero entries in the matrix). Much of the

fill-in can be avoided by periodically reordering the variables in the problem [1]. The concept

of efficient ordering with respect to graphical models was further explored by Kaess et al.

[74], leading to the development of the Bayes tree structure for efficient inference. Polok et al.

[107] extended the advantages of the Bayes tree to the sparse linear algebra setting. In this

chapter, we leverage the use of the Bayes tree in an active SLAM framework to accomplish

efficient evaluations of candidate actions.

Recently, Ila et al. [64] proposed a novel approach to efficiently recover marginal covariance

matrices by performing incremental updates when measurements are added to the system

and the linearization point remains unchanged. Like this approach, we are interested in

investigating the structure of the problem to perform fast evaluations of information-theoretic

objectives.
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4.1.2 Preliminaries

We frame our problem in the context of active visual SLAM with a robot maintaining a

pose graph representation of its trajectory through the environment. Visual features in the

environment are used to provide pairwise constraints as loop-closing measurements between

two poses in the graph with overlapping image views. The robot is tasked with performing a

full-coverage survey of the environment given a nominal exploration policy that covers the

target area in efficient time. However, open-loop execution of this policy leads to unbounded

uncertainty growth as no large loop-closures are contributed. To reduce the uncertainty in

the SLAM posterior, the robot must divert to revisit previously-observed portions of the

environment in order to close loops in the pose graph. The active SLAM framework searches

for candidate loop-closure paths continuously throughout the mission, evaluating each for

their expected benefit in terms of efficient area coverage and uncertainty reduction.

Following the planning formulation of Chapter 2, we define the belief of the robot at a

given planning step k ∈ [1, K] as

Bk = p(Xk|Z0,U0, Z1:k,Γ1:k, U0:k−1), (4.1)

where Xk is the state vector of interest and Z0 and U0 are the prior measurements and

controls, respectively, up to the planning event. Z1:k are the random update measurements

and Γ1:k are the corresponding random acquisition variables. The belief vector is represented

by a multivariate Gaussian with mean and covariance matrix (given in terms of the inverse

information matrix) found using the maximum a posteriori (MAP) estimate,

Bk ∼ N
(

Xk
∗,Λk

−1
)

. (4.2)

We stated previously in Chapter 2 that this brings us to the nonlinear least-squares problem

common to graph-based SLAM [29],

Xk
∗ = argmin

Xk

[

‖X0 −X0
∗‖2Λ0

+
k

∑

i=1

‖xi − f(xi−1,ui−1)‖
2
Ωw

+

k
∑

i=1

ni
∑

j=1

γi,j
∥

∥zi,j − h
(

Xj
i

)∥

∥

2

Ωi,j
v

]

,

(4.3)

where both γi,j and zi,j are random. Linearizing about the nominal mean estimate, X̄k(U0:k−1) =

{X0
∗, x̄1, . . . , x̄k}, found by compounding the set of controls, the problem is expressed as the
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linear least-squares optimization for state update vector ∆Xk:

argmin
∆Xk

[

‖Ak(Γ1:k, U0:k−1)∆Xk − bk(Z1:k,Γ1:k, U0:k−1)‖
2
]

, (4.4)

where Ak is the weighted sparse measurement Jacobian and bk is the weighted residual vector

(both including the acquisition variables).

4.2 Sparsification for Approximate Distributions

In this section, we investigate improving the efficiency of planning within active SLAM

through compression of the representation. Our approach is to reduce the dimensionality

of the underlying SLAM system by incrementally removing pose nodes in the factor graph

through online graph sparsification. This process allows us to construct an approximate

distribution of the full SLAM system that is useful for planning. Our proposed algorithm

operates by removing and repairing nodes using GLCs [14]. The basis of this work is a concept

recently introduced by Indelman [65]: we can use an approximate distribution in place of the

original distribution for many information-theoretic planning applications. The benefit of

using the sparsified approximate distribution is that we can achieve significant computational

savings during the evaluation of candidate actions with little to no sacrifice in the ordering of

decision-making outcomes. For planning purposes, the objective function values themselves

do not need to be the same between the original and approximate distributions. We can

make the same decisions at each planning event by only preserving the relative ordering of

candidate plans.

At the end of the planning horizon, we evaluate the resulting belief BK using an objective

function that quantifies some uncertainty measure; here, we focus on (i) the determinant

of the final pose covariance, (ii) the trace of the final pose covariance, and (iii) the mutual

information gain [63] over the entire distribution:

(i) J =
∣

∣ΛK
−1
∣

∣ ,

(ii) J = tr
(

ΛK
−1
)

,

(iii) J =
1

2
log

|Λ0 +∆Λ|

|Λ0|
,

(4.5)

where ∆Λ is the information added by the candidate action to the prior information Λ0. Each of

these objectives requires evaluation of the associated information matrix, ΛK . However, in this

section we propose evaluating these objectives using a sparsified approximate distribution BK
′

with information matrix ΛK
′. We construct ΛK

′ by replacing the prior SLAM information Λ0
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Figure 4.1 Graph sparsification via GLC. Figures from Carlevaris-Bianco et al. [14]. (a) Identify
the node to be removed (blue) and its Markov blanket. (b) Construct the target information by
marginalizing out the node to be removed. (c) If desired, use the CLT to form a sparse approximation
of the target information. (d) Optionally perform a root-shift operation to reparameterize the
resulting linear potential in terms of a relative frame. (e) Form the GLC factor (green) and insert
into the factor graph.
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in (4.3) with Λ0
′, an approximate prior distribution resulting from online graph sparsification.

We present our proposed method by providing a short background on GLC and then

describing the online graph sparsification algorithm.

4.2.1 Generic Linear Constraints

For efficient planning in active SLAM through compression, we propose sparsifying the SLAM

graph online using GLC. GLC is a framework for performing approximate marginalization in

factor graphs that replaces the removed factors with one or more generic linear constraints.

An overview of the method is presented in Fig. 4.1. The first step in removing a node with

GLC is to identify and construct the target information, Λt. The target information is defined

by the factors in the elimination clique—that is, the node to be removed plus the nodes in its

Markov blanket. The target information is the information that results after marginalizing

out the node to be removed, represented by an n-ary factor over the remaining nodes in the

elimination clique. This factor induces the exact same information as the original factors at

the current linearization point. It is important to note that the target information may be

singular if low-rank measurements are included, as is the case with 5-degree of freedom (DOF)

camera registrations.

The n-ary factor that encodes the resulting potential is called a generic linear constraint.

Since this factor is possibly low-rank, its observation model is found using the eigende-

composition and pseudoinverse of the target information. The eigendecomposition is given
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by

Λt = V DtV
⊤, (4.6)

where Dt is a square diagonal matrix of the rank of Λt. Then, the observation model of the

GLC factor is written as
zglc = Gxt +w,

w ∼ N
(

0,Λglc
−1
)

,
(4.7)

where xt is the vector of variables remaining in the elimination clique and G = Dt

1
2V ⊤. The

GLC factor information is computed with the pseudoinverse of the target information:

Λglc =
(

GΛt
+G⊤

)−1
=

(

G
(

V Dt
−1V ⊤

)

G⊤
)−1

. (4.8)

The GLC factor induces the same potential into the graph as the original factors from

the elimination clique. By performing the above process with optional additional root-

shift operations, the factor can be transformed in order to avoid inconsistencies related to

world-frame linearization.

Unfortunately, exact marginalization causes dense fill-in in the information matrix, which

increases complexity. To maintain sparsity with node removal, the dense GLC factor can be

sparsely approximated using a CLT [25]. In GLC, the CLT approximates the joint distribution

Λt as the product of pairwise conditional distributions and is constructed such that the KLD

is minimized. This is done by finding the maximum spanning tree over all possible mutual

information pairings within the elimination clique. Then, the unary and binary potentials

from the CLT are represented by GLC factors, rather than introducing one n-ary factor.

The experimental evaluation of GLC on large SLAM datasets [14] presents promising

results for reducing complexity while maintaining approximate distributions, which will be

useful for planning. GLC reports an average node removal time on the order of 10 ms and

good KLD values even for the sparse approximate method with over 80% of nodes removed.

4.2.2 Online Graph Sparsification

Our approach is to reduce the dimensionality of the SLAM system by using GLC to remove

nodes in the factor graph while preserving (as much as possible) the original information

content. The method is fairly straightforward but yields large dividends in planning for active

SLAM. We incrementally construct the approximate prior SLAM information Λ0
′ with an on-

line sparsification algorithm. The algorithm is given in Algorithm 4 and involves two principle

processes: (i) online node removal using GLC, found in the function RemoveRecentNodes();

and (ii) online node repair, found in RepairNode(n).
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Algorithm 4 Online Graph Sparsification

Initialize: N = {},R = {},A = {}

while (SLAM is not finished) do
fi = ListenForIncomingFactor()
{ni} = GetNodesFromFactor(fi)
for (ni in {ni}) do

if (ni ∈ N ) then
RepairNode(ni)

end if

end for

if (time elapsed > ∆t) then
RemoveRecentNodes()

end if

end while

Function: RemoveRecentNodes()
{nr} = GetRecentNodesToRemove()
for (nr in {nr}) do

{fr} = GetFactorsToRemove(nr)
{fa} = CalculateGLCFactorsToAdd({fr})
RemoveFromSLAM(nr, {fr})
AddToSLAM({fa})
N = N ∪ nr,R = R∪ {fr},A = A ∪ {fa}

end for

return

Function: RepairNode(n)
{fa} = GetPreviouslyAddedFactors(n)
{fr} = GetPreviouslyRemovedFactors(n)
AddToSLAM(n)
N = N \ n
for (fr in {fr}) do

{ni} = GetNodesFromFactor(fr)
for (ni in {ni}) do

if (ni ∈ N ) then
RepairNode(ni)

end if

end for

end for

RemoveFromSLAM({fa})
AddToSLAM({fr})
R = R \ {fr},A = A \ {fa}
return
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The proposed algorithm proceeds as follows. During SLAM, we periodically remove a

large percentage of the recent nodes using sparse-approximate GLC. In our experiments with

the Hovering Autonomous Underwater Vehicle (HAUV) hybrid simulation, we removed all

new nodes added to the factor graph over the previous 20 s except the most recent node. In

this way, the approximate prior distribution resembles a “skeleton” of the original SLAM

system, with GLC factors connecting the remaining nodes in the graph.

We found this incremental removal process to be extremely efficient, on the order of tens

of milliseconds to remove all recent nodes, such that these periodic operations are easily

performed online and in the background throughout the duration of the mission. Here, we

can see one reason why the proposed method is useful for planning: online sparsification

essentially precomputes many of the necessary operations related to candidate plan evaluation.

Large matrix operations (like Cholesky factorization of the corresponding information matrix—

required for covariance recovery and calculating mutual information) are amortized over the

length of the mission. Marginalization that is performed once during node removal is used

over and over when planning with the approximate, condensed distribution.

Of course, online sparsification during SLAM has its disadvantages. One common conse-

quence is that nodes previously removed from the graph are involved in future loop-closure

measurements. Thus, we propose a simple node repair process for reinserting removed nodes

back into the graph when necessary.

The repair process works by undoing the associated GLC node removal procedure, show-

casing one benefit of using GLC for sparsification. Since GLC operates only on the local

target information over the elimination clique, it is straightforward and efficient to replace the

original node and factors into the graph and remove the corresponding GLC factors. Note

that no calculations are required to recover the original node and factors, only storing these

components upon their initial removal and looking them up upon the repair request. Indeed,

by construction, swapping the GLC factors for the original factors is a near-equivalent swap

of information content. By repairing the node of interest, the loop-closure measurement can

be incorporated and SLAM continues as normal.

From here, we can perform decision-making at any point during SLAM by taking a

snapshot of the sparsified distribution in the form of the information matrix, Λ0
′, and solving

the simulated SLAM problem of (4.3) for each sequence of candidate control actions.

4.3 Online Graph Sparsification Results

We demonstrate our proposed method using a hybrid simulation derived from datasets

collected by the HAUV performing visual SLAM in order to inspect the underwater portion
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Figure 4.2 Trajectory profiles for the experiments using data collected by an underwater ship
hull inspection robot. We design synthetic environments that are visually-salient only in select
regions, designated by the visual loop-closures shown in red. The candidate revisit pose locations
are overlaid on each graph in bright green.

(a) Sonar-spaced inspection (b) Camera-spaced inspection

of a ship hull. We design synthetic environments that are visually-salient only in select portions

of the map. More information on the underwater robot and our synthetic experimental setup

can be found in Chapter 3 [20, 80].

4.3.1 Evaluation with Sonar-spaced Inspection

In the first experiment, the robot surveys the environment following the sonar-spaced

trajectory profile shown in Fig. 4.2(a). Every 20 s throughout the mission, the online

sparsification algorithm removes recent nodes. In between sparsification requests, the robot

initiates a planning event for active SLAM with the goal of reducing its uncertainty. For each

planning event (96 events in total), loop-closing revisit paths to 8 previous poses in the graph

are evaluated and ranked according to their uncertainty benefit. The original and sparsified

distributions for this experiment are shown in Fig. 4.3.

Fig. 4.4 summarizes all active SLAM candidate path evaluations throughout the mission.

Using both the approximate and original distributions, we evaluate the determinant of the

final pose covariance, trace of the final pose covariance, and mutual information gain of the

distribution for each candidate, described by (4.5). Fig. 4.4(d), (e), and (f) show that, in

general, evaluations with the approximate distribution found using the online sparsification

algorithm follow the same trend as evaluations with the original distribution. Computational

savings for recovering the final pose covariance and calculating the mutual information gain

are shown in Fig. 4.4(b) and (c).

71



Figure 4.3 The original (a) and sparsified (b) graphs for the sonar-spaced inspection experiment.

(a) Original (b) Sparsified

Importantly, we see in Fig. 4.5(a), (b), and (c) that the ranking of candidate plans for

all 96 planning events is nearly identical regardless of whether the approximate distribution

or original distribution is used for planning. For this experiment, 88.0% of all evaluations

across the three objective functions maintained the same ranking. Results are improved

when considering that only the top-ranked option is of interest for planning; 92.0% of top-

ranked choices are preserved. On average, we achieved computational savings of 17.2 ms per

covariance recovery and 117.5 ms per information gain calculation, a reduction of 55.0% and

66.5% in evaluation time, respectively. These savings are directly a result of reducing the

dimensionality of the prior SLAM system with sparse-approximate GLC.

4.3.2 Evaluation with Camera-spaced Inspection

The second experiment is similar to the first except in this case the robot surveys with

tracklines providing dense camera coverage of the environment. This mission profile results in

a larger SLAM graph with greater connectivity compared to the first experiment, as shown in

Fig. 4.2(b). An overview of the original and sparsified distributions is shown in Fig. 4.6. In

this experiment, online sparsification yields a reduction in the dimension of the information

matrix from 61, 326 in the original distribution to 5, 142 in the approximate distribution while

maintaining sparsity. Throughout the mission, the active SLAM decision-making process

considers 5 loop-closure revisit poses for each of the 143 planning events.

Fig. 4.7 provides summarized results for the camera-spaced inspection experiment. Like

the first sonar-spaced experiment, the uncertainty-related objective evaluations generally

follow the same trend between the original and approximate distributions. Once again, we

see in Fig. 4.8(a), (b), and (c) that the ranking for candidate plans is largely preserved for

all events, with 92.1% of candidate evaluations maintaining the same ordering, and 94.9% of

top-ranked options. We also see in this experiment an average computation time savings of
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Figure 4.4 Summarized results from the sonar-spaced inspection experiment. (a) The number of
nodes in the graph as a function of time. (b) Evaluation times for recovering the final pose covariance.
This calculation averaged 31.3 ms and 14.1 ms with the original and approximate distributions,
respectively. (c) Evaluation times for finding the mutual information gain. This calculation
averaged 176.8 ms and 59.3ms with the original and approximate distributions, respectively. (d)
The determinant of the final pose covariance. (e) The trace of the final pose covariance. (f) The
mutual information gain over the distribution.
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Figure 4.5 Confusion matrices for displaying the ordering outcomes are presented in (a), (b), and
(c). The 8 rows and columns correspond to the 8 candidate actions during the 96 planning events.
These results show that the relative ranking of candidate plans is well-preserved when using the
sparsified approximate distribution in place of the original distribution during planning.
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42.0 ms (30.5%) for each covariance recovery and 141.3 ms (59.5%) for each information gain

calculation.

4.4 Graph Sparsification Summary

So far in this chapter, we proposed an online graph sparsification algorithm for planning with

approximate distributions in active SLAM. Our method leverages sparse-approximate GLC

to incrementally construct the approximate prior distribution by removing and repairing

nodes online during SLAM. We demonstrated our proposed algorithm with two experiments

based on an underwater robot performing visual SLAM. Planning with the approximate

sparsified distribution, we showed computational savings for plan evaluations between 30%

and 67% while preserving between 88% and 92% of all candidate plan rankings, and 92%

and 94% of top-ranked options.

4.5 Leveraging Structure with the Bayes Tree

In this section, we transition to a new concept based on leveraging the structure of the

planning problem to reduce computational complexity. We propose the use of the Bayes tree

for planning and present an ordering of variables that facilitates fast evaluation of candidate

plans that are similar. This similarity occurs, for example, when a belief is minimally

changed between consecutive timesteps. The Bayes tree is a helpful structure for deciding

variable orderings that are efficient when adding new measurements. We show that using
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Figure 4.6 Planning with an approximate distribution found by online graph sparsification during
SLAM. The original graph (a) and associated information matrix (c). The sparsified graph (b)
has significant reduction in the dimension of the associated information matrix (d), and leads to
computational savings during planning evaluations.

(a) Original (b) Sparsified

(c) dim=61326 (d) dim=5142
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Figure 4.7 Summarized results from the camera-spaced inspection experiment. (a) The number of
nodes in the graph as a function of time. (b) Evaluation times for recovering the final pose covariance.
This calculation averaged 140.5 ms and 97.7 ms with the original and approximate distributions,
respectively. (c) Evaluation times for finding the mutual information gain. This calculation
averaged 237.6 ms and 96.3ms with the original and approximate distributions, respectively. (d)
The determinant of the final pose covariance. (e) The trace of the final pose covariance. (f) The
mutual information gain over the distribution.
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Figure 4.8 Confusion matrices for displaying the ordering outcomes are presented in (a), (b), and
(c). The 5 rows and columns correspond to the 5 candidate actions during the 143 planning events.
These results show that the relative ranking of candidate plans is well-preserved when using the
sparsified approximate distribution in place of the original distribution during planning.
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this representation removes redundant computation by preserving much of the existing tree

structure, allowing for fast incremental updates in order to quickly evaluate a candidate plan

that is similar to a previously-evaluated candidate. Using the Bayes tree data structure for

planning in active SLAM, the contributions of this section are:

1. We identify a variable ordering constraint that allows successive evaluations of a

candidate to be computed efficiently between consecutive timesteps.

2. We design candidates such that they share a common Bayes tree root and present a

subtree caching scheme for fast evaluations across candidates given the root.

3. We present an active visual SLAM framework for an underwater robot, building on

work from Chapter 3, that leverages the ideas for planning efficiently with the Bayes

tree.

Considering the problem formulation of §4.1.2, the solution to (4.4) can be calculated

with sparse linear algebra by Cholesky decomposition of the information matrix Λk = A⊤
k Ak

or QR factorization of Ak [73]. Alternatively, Kaess et al. [74] identified that the solution

can be found by interfacing directly with the corresponding graphical model using the Bayes

tree data structure. We present a brief background of the Bayes tree in the next section and

then show how it is used in our proposed method for efficient planning.
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4.5.1 Bayes Tree

The Bayes tree encodes the relationship between the underlying graphical model and sparse

matrix factorization of the SLAM problem. We can see this relationship by understanding

that variable elimination on the factor graph produces a chordal Bayes net defining a product

of conditional densities over the variables in the system. In the case of a Gaussian factor

graph, the resulting Bayes net is equivalent to the square-root information matrix from sparse

QR factorization. From this observation, Kaess et al. [74] introduced the Bayes tree data

structure for efficient inference. Incremental updates to the SLAM system that were abstract

in the matrix factorization form are instead realized in the Bayes tree as simple edits to the

graphical structure.

Construction of the Bayes tree begins by first constructing the Bayes net from variable

elimination on the factor graph. Eliminating a variable Θi from the graph results in a

conditional density p(Θi|Si) given the separator variables Si. The separator variables are

the variables connected to Θi through factors involving Θi. After all variables have been

eliminated, the Bayes net defines the joint density of the system as a product of conditionals,

p(Θ) =
∏

i

p(Θi|Si). (4.9)

The Bayes tree is constructed by discovering the cliques in the Bayes net. Each node in

the tree represents a conditional density over a clique, Cj, in the chordal Bayes net, with

conditional density given by p(Fj|Sj). Here, Fj are the frontal variables and Sj are the

separator variables, which together define the clique: Cj = Fj ∪ Sj. The separator variables

within the clique are also contained in its parent clique, Πj, such that Sj = Cj ∩Πj. Each

directed edge in the tree points from a parent clique to one of its children and thus represents

conditioning, as in the Bayes net. Together, the Bayes tree expresses the joint density of the

SLAM problem as a product of the conditional densities of its nodes,

p(Θ) =
∏

j

p(Fj|Sj). (4.10)

Incremental updates to the SLAM system are simple to execute within the Bayes tree.

Adding a new factor is accomplished by the following steps:

1. Identify the cliques in the tree containing variables affected by the new factor.

2. Transform the paths from the root of the tree to these cliques back into a factor graph

representation, and store the unaffected subtrees.
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3. Insert the new factor into the factor graph.

4. Form a new Bayes net and Bayes tree from the updated factor graph using a new

elimination ordering.

5. Reattach the unaffected subtrees to the new Bayes tree.

This process illustrates that only the top-most part of the tree (closest to the root) is

recomputed when incorporating a new measurement, since the tree encodes the flow of

information during the elimination procedure.

4.5.2 Efficient Planning with the Bayes Tree

The contributions of this section are centered around leveraging the Bayes tree as a useful

data structure for planning in active SLAM.

Constrained Variable Ordering

We design each candidate loop-closure path with a fixed entrance pose xe in the environment,

such that traveling along the candidate path always proceeds through the entrance pose.

In this way, the large majority of the control actions associated with a candidate do not

change between consecutive evaluations. Usually, only the virtual factors between the current

robot pose xc and the entrance pose are modified to reflect any new measurements that

were incorporated into the SLAM system between evaluations. We can achieve significant

computational savings between these consecutive evaluations by intelligently constructing

the Bayes tree with a variable ordering conducive to efficiently updating the candidate at

sequential timesteps. A key insight is that children (subtrees) of a parent clique in the Bayes

tree are conditionally independent of one another given the parent clique density. Thus, we

can use the root of the tree to partition the system into conditionally independent subtrees

corresponding to (i) the virtual path variables between the current SLAM node and the

entrance pose of the path (Xm), and (ii) all other virtual poses on the path (Xn) and previous

nodes in the SLAM graph not contained in the root (Xl). This leads to a simple rule for

Bayes tree construction: we constrain the current SLAM node and entrance pose to be pushed

to the root of the tree by eliminating these variables after all others in the system. In this

way, the Bayes tree has the factored density

p(Xk) = p(Xl, Xn|Xr)p(Xm|Xr)p(Xr), (4.11)

where p(Xr) is the prior on the root and {xc,xe} ∈ Xr.
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Conceptually, the constrained ordering heuristic is not new; for online SLAM, the iSAM2

algorithm constrains the most recently-used variables toward the top of the Bayes tree with

the constrained column approximate minimum degree (COLAMD) algorithm [27, 74]. Most

incremental updates to the system are therefore efficient since they typically affect only these

recently-used variables. We extend this idea to the planning realm by recognizing that in

planning we often know which variables will be affected in future evaluations. In addition, by

designing the candidates to reuse the same control actions after the entrance pose, we assist

their subsequent evaluations by allowing these portions of the simulated SLAM system to

correspond to subtrees that are carried over and reused during updates. While forcing the

current node and entrance pose into the root does result in some additional matrix fill-in, we

found it to be computationally negligible in practice compared to the added savings.

Here we examine a simple example in Fig. 4.9 to illustrate the proposed constrained

ordering approach. At timestep t we have a SLAM graph consisting of three poses, X0 =

{1, 2, 3}. Beginning with the current node 3 we plan a path that travels through the entrance

pose 99 and provides a loop-closure measurement between pose 2 and virtual pose 101. We

solve the system at t with the constrained ordering that eliminates 3 and 99 last. The resulting

Bayes tree is shown in Fig. 4.9(f) with the green and yellow subtrees together defining the

density p(Xl, Xn|Xr) for this candidate.

At timestep t+ 1, measurements are added to the system and pose 4 becomes the current

SLAM node. To reevaluate the path from the previous timestep, we remove the factor

corresponding to the control from 3 to 99 and augment the system with factors required to

transition from pose 4 to 99. Solving the new system is a simple update with the Bayes tree.

The top-most part of the tree containing cliques involving affected variables is removed and

converted back into a factor graph. The new factors and variables ({4, 5}) are added to the

graph. We reeliminate the variables in this factor graph with a new constrained ordering

forcing 4 and 99 to the end, producing the Bayes tree in Fig. 4.9(g). Note that the subtrees

representing p(Xl, Xn|Xr) from timestep t are carried over and attached to the newly-created

cliques at t+ 1.

Subtree Caching

For planning, a large number of candidates are generally considered at each timestep. We

presented the variable ordering constraints above in the context of efficient evaluations for a

single candidate across multiple timesteps. However, we can extend the previous ideas to

leverage the structure of the Bayes tree across multiple candidates at a single timestep. The

key insight in this approach is that if we force the entrance poses of multiple candidates, say

A and B, to be collocated and use the variable ordering constraints proposed above, then the
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Figure 4.9 Illustrative example of the proposed constrained variable ordering. At timestep t, the
robot plans a path beginning from current pose 3 and through entrance pose 99. The path contains
a predicted loop-closure measurement between node 2 and virtual node 101. (a) The factor graph
at time t. The yellow nodes represent variables in the SLAM graph and the green nodes represent
virtual poses along the candidate path. The measurement Jacobian A, information matrix Λ, and
square-root information are shown in (b), (c), and (d), respectively. The corresponding Bayes tree
for this factor graph is given in (f), with variables 3 and 99 constrained to the root. At the following
timestep t+1, the robot evaluates the candidate path once again. By design, only the virtual factors
between the previous SLAM node 3 and the entrance pose 99 are modified. (e) The factor graph at
t+ 1, which now includes the new current SLAM node 4 and a new virtual pose 5. The Bayes tree
at t+ 1 given in (g) is minimally updated during this evaluation and reuses the subtrees calculated
at time t. In this way the update is efficient due to the partitioning of the graph through the root.

1 2 3

101 99

102 103

(a) Factor graph at timestep t

(b) A (c) Λ (d) Square-root in-
formation

1 2 3
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factors encoded in the root clique of candidate A are the same as those encoded in the root

clique of candidate B. In addition, the subtree corresponding to the virtual poses between the

current SLAM node and the root is also the same:

xA
e = xB

e →
p(XA

r ) = p(XB
r ) = p(Xr),

p(XA
m|X

A
r ) = p(XB

m|X
B
r ) = p(Xm|Xr).

(4.12)

When B is initially evaluated, we cache the subtrees pertaining to the factors that do not

change between evaluations, represented by p(Xl, X
B
n|Xr). Upon subsequent evaluations, we

can recalculate the root of A and share this result with B. To evaluate B, we simply remove

the subtree p(Xl, X
A
n|Xr) corresponding to candidate A and reattach the cached subtree

p(Xl, X
B
n|Xr) of B to the shared root. This process is equivalent to directly assembling

the square-root information matrix in the sparse linear algebra sense without any further

calculations. All numerical entries in the matrix have already been calculated and only

their positions within the matrix are left to assign. From here, the system is solved using

backsubstitution beginning with the root.

The example of Fig. 4.10 demonstrates the caching concept. We will call the previous

example of Fig. 4.9 candidate A and the candidate in Fig. 4.10 candidate B. Once the Bayes

tree for B has been constructed at timestep t, only the cached subtree below the root and the

shared root from candidate A are necessary to construct the tree at t+ 1.

Active SLAM Framework

We present here an active SLAM framework that builds on the intermediate framework of

§3.2 and follows the guidelines for efficient evaluation with the Bayes tree. Our application of

interest is underwater inspection of a ship hull with a HAUV. The robot performs visual pose

SLAM while following a nominal exploration policy that covers the target area efficiently but

leads to unbounded uncertainty growth. Therefore, the goal of the active SLAM framework is

to search and execute loop-closing actions throughout the mission such that the uncertainty

remains below a desired threshold.

Algorithm 5 presents high-level pseudocode of our approach. At each timestep, we query

the SLAM solver for the current robot pose (GetSlamUpdate()). If an entrance pose is not

set, we select the entrance pose from a lookahead horizon of the next several steps of the

nominal control policy (ShiftEntrancePose()). Given the entrance pose, we generate a

bank of candidate trajectories that revisit sampled poses in the environment by traveling

from the entrance pose, to the revisit pose, and back. This process is accomplished in the

PathGeneration() function and detailed further in §3.2.1. For each candidate we compute
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Figure 4.10 Illustrative example of the proposed subtree caching scheme. Given the candidate
shown in Fig. 4.9, the robot plans a second path at timestep t. (a) The factor graph at t, where the
blue variables represent the second candidate, and differ from those in Fig. 4.9(a). The corresponding
Bayes tree at t is shown in (c) and contains the same root clique as the tree in Fig. 4.9(f) since
the entrance pose 99 is also shared between candidates. (b) At time t + 1, the factor graph for
the second candidate is updated with current SLAM node 4 and new virtual pose 5, like that in
Fig. 4.9(e). The corresponding Bayes tree in (d) is completely defined by the cached subtree from
(c) and the root cliques from Fig. 4.9(g). Thus, no calculations are necessary to construct this tree,
only assembling the parts.

1 2 3

202 201 99

203 204 205

(a) Factor graph at timestep t

1 2 3

202 201 99

203 204 205

4

5

(b) Factor graph at timestep t+ 1

2,99,3

201 : 2,99

1 : 2,201

202 : 1,201

203 : 202

204 : 203

205 : 204

(c) Bayes tree at t

3,99,4

2 : 3,99 5 : 4,99

201 : 2,99

1 : 2,201

202 : 1,201

203 : 202

204 : 203

205 : 204

(d) Bayes tree at t+ 1

the predicted factors along the path {f i
n} and clear any previously-cached subtrees if they

exist. The process is also executed at regular intervals or if the linearization point has changed

significantly.

Also at each timestep, we retrieve any new factors {fi} incorporated into the SLAM

system (RetrieveNewFactors()) and compute the factors {fm} that connect the current

SLAM node to the entrance pose. Here, we can recalculate the shared root R of the Bayes

tree inside the function RecalculateRoot() given the previous root (if it exists), the new

factors {fi}, and the current-node-to-entrance-pose factors {fm}.

For each candidate in the candidate bank, we calculate the corresponding Bayes tree

given the new shared root and the candidate-specific factors {f i
n}. If cached subtrees exist,

we can simply assemble the Bayes tree instead. Then, we can evaluate the candidate for its
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Algorithm 5 Bayes Tree Active SLAM Framework

Initialize: bank of empty candidates {Ci}.

while (SLAM is not finished) do
xc = GetSlamUpdate()
if (time elapsed > ∆t or LINPOINT changed) then

xe = ShiftEntrancePose()
for (candidate Ci in {Ci}) do

{f i
n} = PathGeneration(Ci,xe)

ClearCachedSubtrees(Ci)
end for

end if

{fi} = RetrieveNewFactors()
{fm} = ComputeFactorsToEntrance(xc,xe)
R = RecalculateRoot(R, {fi}, {fm})
for (candidate Ci in {Ci}) do

{Si} = GetCachedSubtrees(Ci)
if ({Si} is empty) then

Ti = CalculateBayesTree(R, {f i
n})

CacheSubtrees(Ti)
else

Ti = AssembleBayesTree(R, {Si})
end if

EvaluateCandidate(Ti)
end for

UpdateBestCandidate()
DecideAndExecute()

end while

utility in active SLAM by solving the system and recovering the final pose covariance, which

we use as a measure of uncertainty. Given the set of candidate evaluations, the framework

decides between continuing along the nominal trajectory or executing a candidate set of

actions. Further information about the lookahead horizon and the selection criteria by which

we determine the best candidate can be found in Chapter 3 [20].

4.6 Bayes Tree Results

An underwater robot is tasked with performing an inspection survey subject to a desired

uncertainty threshold. The nominal control policy covers the target area efficiently but leads

to unbounded uncertainty growth, so the robot relies upon the active SLAM framework

to search and execute loop-closing actions. Considering this scenario, we present a brief

investigation into the benefit of the proposed approach for active SLAM. The following

experiments were run on a standard desktop computer with an Intel Xeon X5460 CPU. Our
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algorithms were written in C++ using the Georgia Tech Smoothing and Mapping (GTSAM)

library [28]. The experiments were performed within the hybrid simulation environment of

Chapter 3 using data collected by the HAUV [80] and a synthetic image registration pipeline.

4.6.1 Timing and Complexity Comparison

The first experiment presents a timing and complexity comparison of the proposed method

in Fig. 4.11 and Fig. 4.12. At each timestep in the underwater inspection survey, the robot

evaluates candidates corresponding to revisiting poses A and B in the environment. Snapshots

of the trajectories at an example timestep are shown in Fig. 4.11(a) and (b). We calculate three

statistics related to the evaluation of the candidates: (i) the time required to solve the system

and recover the final pose marginal covariance, (ii) the number of variables reeliminated, and

(iii) the number of factors recalculated. The proposed method with ordering constraints and

subtree caching is compared against two other methods for evaluation. First, we compare

against a batch solving operation where all variables and factors are recomputed during

each evaluation. Second, we compare against using the Bayes tree with the default variable

ordering provided by iSAM2 [74] and without reusing the virtual factors between evaluations,

as if the candidates computed the control actions to A and B independently at each timestep

without the entrance pose constraint.

Seen in Fig. 4.11(c), the proposed method significantly reduces computational time over

the other approaches. On average, the proposed approach offers an order of magnitude

reduction (9.23 x) in computation time over the default Bayes tree method and two orders of

magnitude reduction (105.9 x) over the batch operation. Note that the periodic shifting of

the entrance pose in the proposed algorithm is reflected in the timing plot. The proposed

method aligns with the default Bayes tree method in this case. Fig. 4.12(a) and (c) show the

variables reeliminated from the system at each timestep and cumulatively over the entire

mission, respectively. Similarly, Fig. 4.12(b) and (d) display the same plots for the number

of factors recalculated.

4.6.2 Time-constrained Active SLAM

Here we show results on the performance of the full proposed framework in an active SLAM

setting. For this experiment we allowed the proposed method to search, decide, and execute

loop-closing revisit actions within the hybrid simulation environment. We show results of

the active SLAM performance considering three methods for evaluating candidates: (i) the

proposed constraint ordering and subtree caching approach, (ii) the batch solving operation,

and (iii) the batch solving operation with a time limitation of 200 ms. In the latter scenario,
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Figure 4.11 Timing statistics for evaluating candidates traveling to revisit poses A and B over the
course of the mission. The proposed method far outperforms evaluation via a batch operation and
exhibits significant time savings over the default Bayes tree evaluation method.
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we restricted the framework to discard candidates if their evaluation required more than

200 ms.

Fig. 4.14(a) provides the evaluation times for every candidate searched throughout the

mission. Once again, the computational reduction of the proposed approach is clear compared

to the batch solution. We also see in this figure that the batch method (in both cases)

violates the time restriction fairly early in the mission. As the robot explores and the

SLAM system grows, the batch operation is unable to evaluate candidate actions in a timely

manner. We can see the effect of this computational bottleneck on the resulting active

SLAM performance in Fig. 4.14(b). This figure shows the performance of the framework

with respect to constraining uncertainty while maintaining efficient area coverage. Here, the

time-constrained batch method fails to find loop-closing actions that adequately reduce the

uncertainty throughout the mission. Both the proposed and unrestricted batch approaches

result in nearly identical acceptable uncertainty levels. However, the proposed method greatly
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Figure 4.12 Complexity statistics for evaluating candidates traveling to revisit poses A and B over
the course of the mission. The proposed method far outperforms evaluation via a batch operation
and exhibits significant complexity savings over the default Bayes tree evaluation method.
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Figure 4.13 Performance results of the proposed method in an active SLAM simulation. The active
SLAM framework is tested in three trials (resulting trajectories shown): (a) a time-constrained
batch evaluation approach, (b) an unrestricted batch approach, and (c) the full proposed method
with constrained variable ordering and subtree caching.

(a) Batch-TC (b) Batch (c) Proposed

outperforms in terms of computational efficiency.

4.7 Bayes Tree Summary

We presented contributions within active SLAM by exploiting the Bayes tree data structure

for efficient planning. In particular, our proposed ideas included a constrained variable

ordering and subtree caching scheme that reduce complexity in the planning problem by

reusing computations between candidates. We also proposed an active SLAM framework

using these concepts and showed the benefits of the method with respect to timing, complexity,

and performance within active SLAM.

4.8 Discussion

Both of the concepts introduced in this chapter can be thought of as methods to precompute

operations involved with solving the simulated SLAM system associated with planning. Kaess

et al. [74] identified that the SLAM solution proceeds from a variable elimination procedure on

the corresponding factor graph. To evaluate a candidate plan with an information-theoretic

objective, all variables in the graph must be eliminated.

The online graph sparsification algorithm eliminates variables incrementally during the

mission, folding the information content associated with the elimination into new factors across

the connected nodes (accomplished with the GLC approximate marginalization procedure).

In this way, the elimination cost for the full pose graph is amortized over the duration of

the mission and eliminations performed once are reused for every planning query. There are
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downsides to this approach, however. The sparse GLC method commits to linear factors

that only approximate the information content, such that the original nonlinear factors are

no longer expressed. In addition, the incremental approach may prematurely remove nodes

involved in future loop-closure measurements. Our proposed online repair process partially

alleviates some of these issues but a more principled approach would be beneficial.

The Bayes tree planning framework performs variable elimination in such a way that

the information within the pose graph is factored and expressed as a product of conditional

distributions. Nodes are not removed from the graph and the original nonlinear measurements

are not replaced with approximate, linear constraints. In other words, the information is

not folded into a compressed representation but rather structured into an efficient form.

We proposed a method for leveraging the structure in this chapter, but our method places

restrictions on the design of candidate actions and requires a knowledge as to how the factored

distribution can be reused in order to gain computational savings.

4.9 Chapter Summary

This chapter presented ideas related to improving the efficiency of active SLAM evaluations

through compressing the representation and leveraging the structure of the planning problem.

We investigated the concept of compression by proposing an online graph sparsification

algorithm that reduces the dimensionality of the pose SLAM system in order to reduce

complexity. We also examined the Bayes tree as an efficient data structure for planning,

and proposed an active SLAM framework centered around its use in removing redundant

computations between multiple candidate plan evaluations. Our methods show significant

computational savings and provide a glimpse into how state-of-the-art techniques in the

SLAM community can be beneficial when adapted to planning applications.
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Figure 4.14 Performance results of the proposed method in an active SLAM simulation. Timing
statistics are presented in (a) and a plot of uncertainty vs. path length for each scenario in (b).
When the batch method is restricted to run in the same time as the proposed approach, it fails at
finding loop-closing actions to constrain the uncertainty. The proposed method is able to sufficiently
constrain the uncertainty in a coverage-efficient manner with greatly enhanced computational
efficiency.
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Chapter 5

Risk-averse Optimization under

Uncertainty

5.1 Introduction

The underwater environment poses unique challenges for visual simultaneous localization

and mapping (SLAM). Visual features are sparsely distributed throughout the environment,

making it difficult to gather loop-closure measurements. Even when features are present,

there is some probability that two overlapping images will not be registered. In Chapter 2,

we developed a planning formulation that captures this variability in acquisition, useful for

planning with underwater visual SLAM and other robotics problems. The variability in

acquisition directly leads to variability in localization; the robot’s belief (represented by a

mean vector and information matrix) is highly dependent on the measurements received.

Therefore, when predicting how the belief will evolve given a candidate sequence of control

actions, there is a range of outcomes. The algorithms we proposed in Chapter 3 and Chapter 4

do not consider this belief distribution when selecting the best actions. Two paths with the

same expected benefit will evaluate equivalently in the optimization, even if one has a wider

range of outcomes than the other. This is because the objective functions used to this point

(with respect to robot uncertainty) are risk-neutral. It would be beneficial to consider the

risk associated with the randomness in the belief in the optimization.

This chapter proposes risk-averse objective functions for use in general belief-space planning

problems, with a specific focus on minimizing localization uncertainty in active SLAM. We

show that the planning formulation of Chapter 2 allows us to design these functions to

account for the stochasticity in the belief. In addition, we show how risk-averse planning

leads to desirable behavior within active SLAM. Our inspiration for risk-averse optimization
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is drawn from research in modern portfolio theory, which we adopt and apply to the robotics

domain. In order to design risk-averse objectives, we also propose an analytic method for

calculating the first two moments of the posterior belief distribution. The analytic method is

much more computationally efficient than approaches based on exhaustive enumeration or

sampling of outcomes, and serves as a good strategy for approximating the distribution of

beliefs in the planning problem.

5.1.1 Related Work

Objective function design for active SLAM was previously investigated by Carrillo et al.[15, 16],

who examined the Theory of Optimal Experiment Design to construct appropriate criteria

for measuring uncertainty in the system. Despite their conclusion that the determinant has

desirable properties for use in active SLAM or navigation under uncertainty [17], several

works use the trace of the covariance as an uncertainty metric [67, 114, 126].

Belief-space planning problems like active SLAM or navigation under uncertainty frame

their decision-making process as a multiobjective optimization with costs on localization

uncertainty, control effort or distance traveled, and (at times) reaching a goal pose [67, 105,

106, 126]. With the inclusion of the random measurements into the planning prediction

[126], researchers examined how this randomness affects the components within the objective

function concerning the state vector, Xk. In point-to-point queries, the random measurement

values directly affect the probability of reaching the goal. Both van den Berg et al. [126] and

Indelman et al. [67] include a quadratic cost on reaching the goal pose that encodes a certain

amount of aversion to risk, as we show later. Therefore, the inclusion of this cost component

leads to a conservative solution at the expense of a performance metric, like shortest distance.

This conservatism was also demonstrated by van den Berg et al. in regards to gathering

measurements in a light-dark world.

For those works solving planning queries in environments with obstacles, risk has also been

considered under the topic of collision avoidance [34, 126, 131]. In deterministic planning,

checking collisions with obstacles is a function of the robot state. Extending to the stochastic

setting, where we track a robot’s belief as a distribution over state, constraints in the

optimization concerning collision must be formulated as chance constraints [18], where the

failure is now described by a probability, and aversion to risk in this context is modeled by

explicitly satisfying these constraints [33].

To evaluate chance constraints, there have been two typical approaches: (i) use a

parameterized form of the underlying belief (e.g., Gaussian) and transform the chance

constraints to constraints on the parameters [125], and (ii) use Monte Carlo simulations to
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transform the stochastic problem into sampled deterministic evaluations and approximate

the expected cost with the sampled set [10]. This particle-based approach does well in

representing non-Gaussian distributions but the compounded computational cost of multiple

objective evaluations may not be tractable for large sample sizes.

Most engineering applications formulate a dual criteria optimization to account for risk in

stochastic outcomes. As in the chance-constrained case, the optimization seeks to maximize

expected return subject to some limit on a risk measure. Markowitz [94] originally proposed

variance as a measure of risk for making decisions on investments within a portfolio. Another

common measure is value-at-risk (VaR), which defines a minimum level for a portfolio such

that the probability of portfolio loss greater than this level does not exceed some confidence

threshold [90]. A related measure known to be more consistent is the conditional value-

at-risk (CVaR) [111], defined as the conditional expectation of the losses above the VaR.

Ben-Tal and Teboulle [9] introduced the optimized certainty equivalent (OCE) as a risk

measure, showing its parallels to expected utility theory.

Another approach to portfolio optimization, which we examine in this chapter, is expected

utility theory, where a von Neumann-Morgenstern utility function that defines rational investor

behavior is optimized [96, 132]. Different from the dual criteria optimization, this single

criterion approach (the “economist” approach [112]) implicitly encodes aversion to risk in

the utility function of wealth. Seck et al. [112] demonstrated an equivalence between the

dual constraint optimization problem and a max-min formulation involving a certain class of

utility functions. Quadratic, exponential, and power utility functions are all popular forms in

the financial world [46]. The quadratic function is related to the traditional mean-variance

analysis of Markowitz [71]. Exponential utility and related approaches have been widely

applied to Markov decision processes (MDPs) [61, 93, 97].

5.2 Representing the Posterior Belief Distribution

The planning formulation of Chapter 2 computes a “distribution of distributions” relating

to the posterior belief over a sequence of control actions. That is, the belief computed

over the planning horizon considering the random measurements and random acquisitions is

itself random. In previous chapters, we glossed over how to represent this posterior belief

distribution, as the optimization problems in these chapters only required a calculation of the

mean of the distribution. In this chapter, however, we will examine risk-sensitive optimization

(specifically risk-averse optimization) that demands a more complete representation of the

posterior belief distribution.

Recall that the posterior belief Bk ∼ N
(

Xk
∗,Λk

−1
)

is calculated over the planning
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horizon in a nonlinear least-squares framework, given random acquisition variables and

random measurements along a candidate sequence of control actions. Solving, the belief mean

vector and information matrix are (restated here for convenience):

Xk
∗(Z1:k,Γ1:k, U0:k−1) = X̄k +

(

A⊤
k GkAk

)−1
A⊤

k Gkbk,

Λk(Γ1:k, U0:k−1) = A⊤
k GkAk,

(5.1)

where Gk encompasses the random acquisition variables and the residual bk contains the

random measurements. This leads to the following question: how can we express the posterior

belief distribution?

To represent the complete distribution, we can consider three options [55]. One option is

to exhaustively enumerate every possible combination of measurements and corresponding

acquisitions over the sequence of actions, as in Fig. 5.1(a). It is clear that this is an intractable

endeavor, however; for each action, there are multiple measurements that might be possible,

each with an associated acquisition variable, and a continuum of values that may be realized.

A second option is to randomly sample a number of measurement and acquisition sequences

over the planning horizon to capture the distribution as a collection of sampled outcomes

(Fig. 5.1(b)) [10]. Still, this involves evaluating the deterministic belief for each sampled

sequence, which is expensive for information-theoretic objectives.

In the spirit of He et al. [55], we instead take an analytic approach, shown in Fig. 5.1(c).

We choose to approximate the posterior belief distribution as Gaussian and analytically

compute the first and second moments. In this way, we can employ the Gaussian parame-

terization to efficiently compute the expected reward during the risk-sensitive optimization,

avoiding multiple evaluations related to exhaustive enumeration or sampling. Therefore, we

approximate the first two moments of the posterior belief distribution by projecting the

uncertainty from the random variables into the belief space. This projection is accomplished

with the helpful equation for first-order propagation of uncertainty,

Var[y(X)] ≈
∂y

∂X

∣

∣

∣

E[X]
·Var[X] ·

∂y

∂X

∣

∣

∣

⊤

E[X]
. (5.2)

Then, the expected value and variance of the elements within the belief-space state vector

are:
E [Xk

∗] = X̄k,

Var [Xk
∗] ≈ Rk ·Var[bk] ·Rk

⊤,

E [vec(Λk)] = vec
(

A⊤
k E[Gk]Ak

)

,

Var [vec(Λk)] ≈ Pk ·Var[Γ1:k] ·Pk
⊤,

(5.3)
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Figure 5.1 Methods for representing the posterior belief distribution. (a) Exhaustive enumeration
of all possible measurement and acquisition sequences is intractable. (b) Sampling measurement
and acquisition sequences to form a collection of sampled outcomes that capture the distribution.
This is still expensive for information-theoretic objectives. (c) We take an analytic approach and
approximate the posterior belief distribution by projecting the uncertainty from the random variables
into the belief space.

(a) Exhaustive enumeration

(b) Sampling sequences

(c) Analytic computation
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where

Rk =
(

A⊤
k E[Gk]Ak

)−1
A⊤

k E[Gk], (5.4)

and the columns of the partial derivative Pk (indexed by c) correspond to an individual γi,j,

P
(c)
k = vec

(

H i,j
k

⊤
Ωi,j

v H i,j
k

)

. (5.5)

Var[bk] is the residual covariance and Var[Γ1:k] = [D(λi,j(1− λi,j))] is the diagonal covariance

of the independent acquisition variables. The covariance of the mean vector, Var[Xk
∗], is a

function of the randomness in both measurements and acquisitions. To make this calculation

possible, however, we only consider the variance of the measurements (through the residual

vector bk) and evaluate the acquisition variables at the mean [67]. The covariance of the

information, Var[vec(Λk)], depends on the random acquisitions and not the measurements

themselves. It is worth noting that H i,j
k is sparse for many robotics applications, allowing

us to efficiently compute the covariance of the information in (5.3) by leveraging sparsity

patterns. Now that we have an analytical representation of the posterior belief distribution,

we will discuss designing a risk-averse optimization next.

5.3 Risk Aversion

Given a representation of the random belief from the planning prediction, we seek to design

objective functions that consider the stochasticity. Engineers often optimize with stochastic

outcomes by posing a dual criteria problem: maximize expected return subject to explicit risk

constraints [112]. The risk constraints are generally framed as thresholds on risk measures,

like variance [94], VaR, CVaR [111], and OCE [9]. Economists, on the other hand, often

formulate risk-sensitive optimization as a single criterion problem, maximizing the expected

value of a von Neumann-Morgenstern utility function that implicitly encodes aversion to risk

[132]. Inspired by portfolio selection via expected utility theory, we adopt the economist

approach in this chapter.

Research from expected utility theory shows that investor behavior can be encoded in

a utility function of wealth, U (W ), such that maximizing the expected return on utility,

E[U (W )], results in more desirable decisions than directly maximizing the expected return

on wealth, E[W ]. A utility function that encodes rational investor behavior holds to four

main axioms [46]:

1. Investors exhibit non-satiation, U ′(W ) > 0.

2. Investors exhibit risk aversion, U ′′(W ) < 0.
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3. Investors exhibit decreasing absolute risk aversion, A ′(W ) < 0.

4. Investors exhibit constant relative risk aversion, R ′(W ) = 0.

The first two axioms equate to U (W ) being monotonic and concave with respect to W . The

measures of absolute risk aversion and relative risk aversion are defined as

A (W ) = −
U ′′(W )

U ′(W )
,

R(W ) = W ·A (W ).

(5.6)

Absolute risk aversion is related to the absolute amount of wealth an investor puts toward

risky assets. Similarly, relative risk aversion is related to the fraction of wealth invested in

risky assets.

We can consider the robot as an investor with the goal of maximizing its wealth from a

number of risky investments. However, rather than maximizing wealth, the robot seeks to

maximize information from a number of uncertain sensor measurements. Specifically in this

chapter, we are interested in aversion to risk with respect to robot localization—that is, with

respect to the error in the robot’s knowledge of its state. Hence, we focus our investigation

of risk aversion on the information-theoretic components of the objective function (those

described by gΛ(Λk
−1)).

Within the objective function, we seek to minimize uncertainty rather than maximize

wealth, so we define

W = T − tr(Λk
−1) = T −m⊤vec(Λk

−1), (5.7)

where T is a user-specified upper bound on the uncertainty and the trace is expanded using

an element selection vector m. The mean and variance of the “wealth” is represented by

E
Γ1:k

[W ] = T −m⊤
E[vec(Λk

−1)]

≈ T −m⊤vec
(

E[Λk]
−1) ,

(5.8)

and

Var
Γ1:k

[W ] = m⊤Var
[

vec(Λk
−1)

]

m. (5.9)

The variance of the belief covariance matrix is written in terms of the variance of the belief

information matrix:

Var
Γ1:k

[

vec(Λk
−1)

]

≈ Lk ·Var
Γ1:k

[vec(Λk)] ·Lk
⊤, (5.10)
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where we once again used the first-order projection of uncertainty with

Lk = −
(

E[Λk]
−⊤ ⊗ E[Λk]

−1
)

, (5.11)

and ⊗ denotes the Kronecker product. Like the calculations in (5.3) and (5.5), we can directly

leverage the sparsity in computing the trace from m in order to find only those terms in Lk

that will be used in (5.9).

Also, the robotics planning problems we consider are typically formulated as minimizations.

To transform the maximization of expected utility into a minimization, we write an equivalent

penalty function from the utility function:

P(W ) = −U (W ). (5.12)

At this point, an open question is how to design the form of the utility function U (W ) for

planning problems, specifically active SLAM. To do this in a way that facilitates multiobjective

optimization, we turn to expected utility theory.

5.3.1 Expected Utility Functions

In the robotics planning literature, the localization uncertainty costs within the planning

objective are typically linear in the trace (or determinant) of the belief covariance [20, 67, 114,

126]. The linear objective function is monotonic but not concave, and is therefore risk-neutral.

Without modeling randomness in the acquisition, this cost is sensible because the belief

covariance is deterministic [55]. However, our formulation leads to a random belief covariance

and minimizing a linear cost in this case disregards variability in the outcome. Instead, we

prefer to design objective functions that are risk-averse by replacing the linear cost with an

appropriate utility function. Quadratic, exponential, and power utility functions are very

common in the financial world, so we examine their usefulness in our optimization.

Quadratic Utility

The quadratic utility function is written as

Uq(W ) = W −
ηq
2
W 2, (5.13)

with ηq > 0 and W ≤ 1/ηq. Trivially, the equivalent penalty function is

Pq(W ) = −W +
ηq
2
W 2. (5.14)

98



Considering the wealth W as a random variable and taking the expectation, the expected

penalty becomes

E
Γ1:k

[Pq(W )] = −E[W ] +
ηq
2

(

Var[W ] + (E[W ])2
)

. (5.15)

Notice that the quadratic function is completely described by the first two moments, no

matter the shape of the distribution. This is an appealing property in many optimization

contexts when the full distribution is unknown. In addition, the quadratic utility function has

parallels to traditional mean-variance optimization introduced by Markowitz [94]. However,

despite being risk-averse, the quadratic function does not satisfy the third and fourth axioms

for rational behavior outlined above [46]. Specifically, this function exhibits increasing

absolute and increasing relative risk aversion. Inserting our definition of wealth and removing

constant terms, we arrive at the following form of the quadratic penalty function:

E
Γ1:k

[Pq(W )] = (1− T ηq)m
⊤vec

(

E[Λk]
−1)

+
ηq
2

(

m⊤Var
[

vec(Λk
−1)

]

m+
(

m⊤vec
(

E[Λk]
−1))2

)

.
(5.16)

Many optimization frameworks, though, design quadratic costs in the form of E[X⊤QX],

where Q is a positive-definite weight matrix. This form can be factored as E[X⊤QX] =

E[X]⊤QE[X] + tr(QVar[X]). By assigning T = 1/ηq, we can transform the quadratic penalty

to fit this expression,

E
Γ1:k

[Pq(W )] =
ηq
2

(

m⊤Var
[

vec(Λk
−1)

]

m+
(

m⊤vec
(

E[Λk]
−1))2

)

. (5.17)

However, this form of the utility function fixes the level of risk aversion, such that adjusting

the value of the risk parameter ηq adjusts the mean and variance terms in tandem. Therefore,

we prefer to employ the more general function of (5.16) in our analysis.

Exponential Utility

Exponential utility has been widely examined for risk-averse optimization, including in MDPs

[61, 93, 97]. The exponential utility function is given by

Ue(W ) = −e−ηeW , (5.18)

with ηe > 0. Like quadratic utility, the exponential function does not hold to the third and

fourth axioms for rational behavior [46, 97]. Exponential utility exhibits constant absolute
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risk aversion (A (W ) = ηe) and increasing relative risk aversion. When the wealth is assumed

to be normally distributed, minimizing the exponential penalty function reduces to

E
Γ1:k

[Pe(W )] = exp
(

ηe

(

m⊤vec
(

E[Λk]
−1)+

ηe
2
m⊤Var

[

vec(Λk
−1)

]

m
))

. (5.19)

Thus, exponential utility provides a very intuitive way of handling different levels of

absolute risk aversion within the optimization—varying the value of ηe squares the weight of

the variance term while linearly adjusting the effect of the mean term. In addition, we see

that the exponential penalty is no longer a function of the uncertainty threshold T , which is

attractive from a design standpoint.

Power Utility

A utility function that follows rational investor behavior defined by the four axioms is the

power function, given by

Up(W ) =







W (1−ηp)

(1−ηp)
, ηp 6= 1

logW, ηp = 1
. (5.20)

Here, the relative risk aversion equals the parameter ηp (R(W ) = ηp). We can write an

equivalent penalty function to the power utility function:

Pp(W ) =







−W (1−ηp)

(1−ηp)
, ηp 6= 1

− logW, ηp = 1
. (5.21)

For a random belief covariance and ηp 6= 1, the expected value of the power penalty function

is approximated using a Taylor series expansion as

E
Γ1:k

[Pp(W )] ≈ −
E[W ](1−ηp)

1− ηp
+
ηp
2
Var [W ]E[W ](−ηp−1). (5.22)

While this function does not reduce as nicely as the quadratic and exponential penalties, it is

the only utility of the three that follows rational behavior in all scenarios.

We propose the use of the above three risk-averse penalty functions within the planning

objective function. Replacing the commonly-used linear uncertainty costs with these penalty

functions naturally encodes risk-averse decision-making with respect to the belief uncertainty.

Each of these three functions has different characteristics that may be useful or desired for

different applications.
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5.4 Simulation Results

We now present simulation results that show the effect of the random acquisition variables

on the belief and the benefit of risk-averse planning.

5.4.1 Analytic vs. Sampling Comparison

Here we present an initial comparison of the analytic and sampling strategies for computing

the posterior belief distribution presented in §5.2. We perform an experiment using the

hybrid simulation detailed in §3.4, with a moderately-salient region down the middle of the

environment. As the robot explores following the nominal exploration policy, we continuously

plan revisit paths through the salient area and predict the belief along each path using the

formulation of Chapter 2.

Fig. 5.2 shows results from computing the posterior belief distribution for each evaluation

during the experiment. Specifically, we compare the analytic and sampling approaches to

finding the mean and variance of the trace of the final pose covariance, which are the terms

of interest for our active SLAM system. Fig. 5.2(a) shows that the analytically-calculated

mean of the trace exactly follows the sample mean with both 100 and 1000 samples. The

variance of the trace is shown in Fig. 5.2(b). While the analytic result is not equivalent to

the sample variance, the approximate calculation does follow the same trend (plotted on a

log scale). For planning purposes, the variance computation does not need to be exact; we

are interested in expressing the risk associated with different decisions and it is sufficient to

preserve the relative risk measures between options. The benefit of the analytic approach is

seen in Fig. 5.2(c) and (d). The sampling strategy is roughly an order of magnitude more

computationally expensive for 100 samples and two orders of magnitude for 1000 samples.

Thus, we are willing to approximate the mean and variance of the trace in order to save

significant time and computational resources.

5.4.2 One-dimensional Intuition

The following example shown in Fig. 5.3 and Fig. 5.4 illustrates the intuition behind the

method for risk-averse planning. Consider a sensor placed in a one-dimensional environment

with prior belief information Λ0 = 1.0. The sensor is able to receive measurements from

two sources with constant information. Measurement source Sa has information Ωa and

measurement source Sb has information Ωb = 0.1Ωa. Each measurement source also has

a binary variable describing whether it is acquired with a parameter dependent on the

placement of the sensor. As such, acquisition variable γa reaches a peak probability of success
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Figure 5.2 Comparison of analytic and sampling strategies for representing the posterior belief
distribution. (a) Regarding the trace of the robot covariance, the analytic approach we propose
leads to the same expected value as the sampling approach, and (b) the same trend in variance. (c)
(d) The analytic approach is significantly faster to compute compared to sampling measurement
and acquisition sequences (sampling shown for 100 and 1000 samples).
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of max p(γa = 1) = 0.2 at x = −5. Acquisition variable γb reaches a peak probability of

success of max p(γb = 1) = 1.0 at x = 5. The state-dependent parameter functions for the

acquisition variables are shown in Fig. 5.3(a). Each measurement source contributes expected

information E[Λi] = p(γi = 1)Ωi = λiΩi, shown over the one-dimensional environment

in Fig. 5.3(b). At their respective peak probabilities of acquisition, Sa contributes twice

the expected information than source Sb, as Sa is 10 times more informative but Sb is 5

times more likely to be acquired. Using the method from Chapter 2 and the proposed

analytic representation of the posterior belief distribution, Fig. 5.3(c) shows the predictions

of the expected value and variance of the belief covariance for placing the sensor along the

environment.

Consider the simple risk-neutral, linear objective function of tr(Λ−1), graphed in Fig. 5.4(a).

With an initial sensor placement of x = 0 and a gradient descent update framework, the sensor

follows the gradient and converges to a placement of x = −5. Now consider minimizing the

risk-averse penalty functions for quadratic ((5.16)), exponential ((5.19)), and power ((5.22))

utilities. These objective functions account for the uncertain measurement acquisition and

are graphed in Fig. 5.4. In these cases, the sensor initially placed at x = 0 converges to the
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Figure 5.3 One-dimensional intuition. (a) The functions describing the probability of acquisition
for each measurement source in the one-dimensional example. (b) The expected value of information
contributed to the belief by a measurement from each source. (c) The predictions for the expected
value and variance of the belief covariance as a function of sensor placement.
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risk-averse location of x = 5. Monte Carlo simulations of the resulting covariance from each

placement are shown in Fig. 5.4(e) and (f). While the placement at x = −5 often yields a

very low uncertainty, it also often receives no measurements. The placement at x = 5 is

guaranteed to receive the measurement from Sb.

Fig. 5.5 shows the change in each of the penalty functions when varying the parameters

involved. The quadratic function (5.16) exhibits a wide array of risk-sensitive behaviors

but is fairly restrictive in terms of valid parameter ranges. The exponential function (5.19)

easily adjusts the sensitivity to variance by changing the value of ηe. The power function

in Fig. 5.5(c) shows a more subtle interaction between expected value and variance when

modifying the value of ηp, which directly modifies the level of relative risk aversion. This

function is also dependent upon the uncertainty bound T , seen in Fig. 5.5(d).

5.4.3 Planar Robot

We can apply the intuition from the previous example to a planar robot with control authority

along the x and y directions. Rather than placing a sensor, we are interested in localizing

103



Figure 5.4 One-dimensional intuition. (a) A linear objective function of J = Λ−1, which simply
minimizes the expected value of the predicted belief covariance. (b) The quadratic objective function
of the form of (5.16), with ηq = 0.7 and T = 1.5. (c) The exponential objective function of the form
of (5.19), with ηe = 2. (d) The power objective function of the form of (5.22), with ηp = 4 and
T = 1.5. (e)(f) The resulting covariance for 1000 trials of Monte Carlo simulations of the sensor
belief, placed at x = {−5, 5}.
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Figure 5.5 One-dimensional intuition. (a) The quadratic objective function graphed for varying
values of the parameter ηq with T = 1.5. (b) The exponential objective function graphed for varying
values of the parameter ηe. (c) The power objective function graphed for varying values of the
parameter ηp with T = 1.5. (d) The power objective function graphed for varying values of the
uncertainty bound T with ηp = 4.
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the robot along a trajectory and reaching a goal region (Fig. 5.6). Similar to the previous

example, the robot receives absolute measurements in x and y from two different sources of

constant information. The information and acquisition properties for these sources are the

same as in the one-dimensional example (Fig. 5.3(a), (b)) but extend along the y-direction.

The robot starts at pose (x, y) = (0, 0) with the goal of reaching a final pose at planning step

K = 10 with y = 20. We update the trajectory using a gradient descent optimization and use

this example to show the applicability of our formulation to trajectory-smoothing planners.

In this example, we compare our proposed risk-averse planner to the method of Indelman

et al. [67]. Their method uses the following forms of the costs in (2.25) and (2.26):

gu(uk) = ‖δ(uk)‖
2
Mu
,

gΛ(Λk
−1) = m⊤vec(Λk

−1),

g
x
(xK

∗ − xG) = ‖xK
∗ − xG‖

2
Mx

,

(5.23)

where δ( · ) is the diversion from the nominal control input and M represents a weight matrix.

The Indelman et al. approach does not consider the randomness of the acquisition variables

and is unaware of risk in the belief covariance. With this method, the robot settles on a

path traveling the peak acquisition zone of Sa, shown in Fig. 5.6(c). However, our proposed

framework accounts for the randomness of the acquisition in the belief covariance matrix by

replacing the uncertainty cost above with gΛ(Λk
−1) = P(W ), where P(W ) represents the

penalty functions of (5.16), (5.19), and (5.22). With the risk-averse optimization, the robot

prefers a path traveling the peak acquisition zone of Sb, shown in Fig. 5.6(e).

The effect of the randomness of acquisition is clearly seen when we simulate 1000 runs of

the robot traversing the selected paths. Fig. 5.6(b), (d), and (f) show the trace of the marginal

covariance of the belief at the final planning step for the simulations. The uncertainty is

often lower with the Indelman et al. method, but the proposed method path far outperforms

the path from Indelman et al. with respect to worst-case uncertainties. The risk-averse path

consistently receives measurements for improved localization.

5.4.4 Active SLAM Decisions

Consider a Hovering Autonomous Underwater Vehicle (HAUV) performing visual SLAM to

inspect a ship hull, as in Fig. 1.3. The robot executes a lawnmower-like trajectory over the

underwater portion of the hull to collect camera images of the environment in a coverage-

efficient manner. However, open-loop execution of this policy results in navigation drift,

so the robot must perform loop-closing revisit actions throughout the mission to bound

its uncertainty. Loop-closures in the visual SLAM formulation come from pairwise camera
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Figure 5.6 Results from the planar robot example. (a) The initial trajectory. (c) The resulting
trajectory from the gradient-based optimization method of Indelman et al. [67] with an objective
function that is linear in the belief covariance. (e) The resulting trajectory from the gradient-based
optimization with the proposed risk-averse formulation using an objective that includes a penalty
function of the belief covariance (power function results shown). (b)(d)(f) The trace of the robot’s
terminating covariance for 1000 trials of Monte Carlo simulations of the above trajectories. The
proposed risk-averse method results in a path that consistently receives measurements for improved
localization.
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registrations between overlapping images.

For this simulation, we design a synthetic environment where most of the environment is

feature-less and has zero registrability. We use a measure of visual saliency [80] and a Gaussian

process (GP) prediction [20] to model the registration acquisition variables throughout the

environment. Given a path planning algorithm for finding possible revisit paths, we evaluate

a candidate path based upon its distance traveled and its final uncertainty, which we frame

as a risk-averse penalty function expressing quadratic, exponential, or power utility. The

objective function becomes

J = gu(U0:K−1) + E
Γ1:K

[

P
(

T −m⊤vec(ΛK
−1)

)]

, (5.24)

where gu(U0:K−1) computes the path length (scaled by a weight), the threshold is set to

T = 0.05, and m selects the diagonal elements of the final pose marginal covariance. We

show the benefit of the proposed risk-averse framework within this type of sampling-based

active SLAM system by comparing to the path evaluation method of our previous work in

Chapter 3 [20].

Fig. 5.7 shows the HAUV deciding between two candidate loop-closure paths at pose

number 770 of the mission. Candidate path A considers revisiting a moderately-salient portion

of the environment centered at pose number 270 in the graph. Candidate path B considers

revisiting a more salient area centered at pose 320 in the graph. Here we see the tradeoff

illustrated throughout this chapter: path A has a high risk-reward ratio. Registering to poses

along path A provides greater information gain as the resulting loop-closures are larger than

loops closed via path B. However, the higher visual saliency for images along path B means

that registrations to these poses are more likely to occur than those along path A.

Both the previous and proposed methods select path A in this scenario. Table 5.1 presents

statistics from each method related to the selection, including evaluation times. It also

presents the number of proposed camera registrations for each path, the average probability

of acquisition of these hypotheses, and the expected values and variances of the uncertainties

predicted using the methodology from §5.2. We overlay these predictions on the penalty

function contour plots of Fig. 5.8. Despite the higher variance and longer length, path A has

a lower expected uncertainty than path B. We see why preferring path A is sensible given

the Monte Carlo simulation results for traveling each path in Fig. 5.7(b) and (d). Only 2

trials in 1000 from path A result in uncertainties greater than the threshold and many trials

outperform the resulting uncertainties of traveling path B.

We investigate a second scenario later in the mission. At pose number 1145, the robot

again decides between revisiting the same locations along paths A and B. This time, the
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Figure 5.7 Results from the first HAUV planning scenario. (a) The trajectory of revisit path A

from pose 770 to pose 270 and back. (b) The trace of the final pose covariance for 1000 trials of
a Monte Carlo simulation of traveling path A. (c) The trajectory of revisit path B from pose 770
to pose 320 and back. (d) The trace of the final pose covariance for 1000 trials of a Monte Carlo
simulation of traveling path B.
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robot is farther along in the mission and must travel farther to close loops, leading to higher

predicted uncertainties than in the first scenario. Here, the previous method of Chapter 3 [20]

once again selects path A. Interestingly, the quadratic function (ηq = 20) also selects this path,

as one downfall of this function is that it becomes less risk-averse as the wealth decreases. In

contrast, the proposed exponential and power methods (with ηe = 400 and ηp = 4) prefer

path B even though they predict a higher expected uncertainty and longer traveling distance

than path A. Fig. 5.8 shows how the penalty function contours change given the much closer

predicted proximity to the threshold. The Monte Carlo simulations of Fig. 5.9(b) and (d)

show why choosing path B is desirable in this case. Traveling path A results in 147 trials

of 1000 that exceed the uncertainty threshold, but the robot can confidently travel path B

without concern.

5.4.5 Hybrid Simulation

To further illustrate the proposed method, we present active SLAM results from the hybrid

simulation first outlined in §3.4. In this experiment, the HAUV surveys the target environment

109



Figure 5.8 The uncertainty penalty function contours for the HAUV planning scenarios. (Left
column) At pose 770. (Right column) At pose 1145.
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Table 5.1 Predictions & Statistics for HAUV Active SLAM Decisions

Decision at Pose 770 Path A Path B

Distance [m] 21.23 20.45
Registration Hypotheses 39 37

Avg. p(γi,j = 1) 0.232 0.804
E[m⊤vec(ΛK

−1)] 0.02932 0.03047
Var[m⊤vec(ΛK

−1)] 9.743e-07 3.791e-09

Previous Method[20]

Evaluation Time [ms] 45.73 59.29
Selected Path—Linear A

Proposed Methods

Evaluation Time [ms] 117.75 138.66
Selected Path—Quadratic A

Selected Path—Exponential A

Selected Path—Power A

Decision at Pose 1145 Path A Path B

Distance [m] 31.79 32.59
Registration Hypotheses 35 33

Avg. p(γi,j = 1) 0.276 0.893
E[m⊤vec(ΛK

−1)] 0.04464 0.04503
Var[m⊤vec(ΛK

−1)] 2.400e-06 3.048e-09

Previous Method[20]

Evaluation Time [ms] 90.03 100.46
Selected Path—Linear A

Proposed Methods

Evaluation Time [ms] 150.36 198.50
Selected Path—Quadratic A

Selected Path—Exponential B

Selected Path—Power B

following the nominal exploration policy with sonar-spaced tracklines. At specific points in

the mission, the robot is presented with the decision to revisit to the salient regions centered

at poses 270 and 320, as in the previous experiment. We evaluate each option according to

the simple objective function,

J = E
Γ1:K

[

P
(

T −m⊤vec(ΛK
−1)

)]

. (5.25)

Here, we compare the linear function of directly minimizing the expected value of the trace of

the covariance against the power penalty function of (5.22). For each objective, we run the

hybrid simulation and allow the active SLAM framework to decide the trajectory. Then, we
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Figure 5.9 Risk-averse planning for an underwater robot performing visual SLAM. The robot
must decide between path A (a) and path B (c) for gathering loop-closure camera registrations.
Previous methods select path A, which has a lower predicted uncertainty and shorter path length
than B, but the proposed risk-averse planning framework selects path B. Monte Carlo simulations
in (b) and (d) show that path B is indeed preferable. Path A exceeds the final pose uncertainty
threshold in 147 of 1000 trials.
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perform multiple simulations of the resulting trajectory to examine the effect of the random

camera registration acquisitions on the localization uncertainty.

Results from 100 simulations using each objective function (linear and power utilities)

are shown in Fig. 5.10. These graphs plot the robot navigation uncertainty versus the

distance traveled throughout the mission. Fig. 5.10(b) shows the wide variability of the

uncertainty resulting from the linear objective often selecting the moderately-salient revisit

waypoint at pose 270. The power function characterizes the risk involved in attempting

loop-closure registrations near pose 270, and thus generally prefers the revisit waypoint at

pose 320. Simulations from this trajectory are shown in Fig. 5.10(d). As loop-closures along

this trajectory are much more likely to be acquired, the uncertainty simulations are tightly

distributed.
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5.5 Discussion

The above results show how the power penalty function naturally lends itself to desirable

behavior in active SLAM. While the uncertainty is low, the robot is willing to make risky

decisions for possible high rewards. But as the uncertainty grows, approaching the threshold,

the robot exhibits greater risk aversion, making more conservative but safer decisions. This is

in contrast to the quadratic function, which exhibits decreasing aversion to risk as the wealth

decreases (the uncertainty grows). In addition, the quadratic function is generally difficult to

tune, as the range of valid parameter values is restricted. Outside this range, the quadratic

function begins experiencing negative marginal utility and violates the first axiom of rational

behavior [71].

The exponential function removes the dependence on the uncertainty threshold T and the

risk parameter ηe directly controls the absolute risk aversion, supporting its wide investigation

in previous literature. However, rational investor behavior is defined by constant relative

risk aversion, where the absolute amount of risk tolerated is proportional to the amount

of wealth involved, and this is not reflected in the exponential function. The active SLAM

application features large gains and drops in uncertainty as the robot trades off exploration

and information-gathering, so it is sensible to model constant relative risk aversion across the

uncertainty spectrum. For this reason, we prefer the power utility function.

It is worthwhile to note that we are able to calculate these utility functions because we

approximate the posterior belief distribution as Gaussian and select the trace of the robot’s

terminating covariance as the measure of uncertainty. Rather than explicitly computing the

moments in (5.3), we go one step further and only compute the elements necessary for the

objective functions. In the case of the trace, sparsity of the element selection vector m greatly

reduces the computational load.

5.6 Chapter Summary

In this chapter, we proposed a risk-averse framework for planning in belief-space with random

measurements and random acquisition variables. We leveraged the randomness in the belief

covariance to design objective functions for the planning problem that characterize aversion

to risk, inspired by expected utility theory in modern portfolio optimization. The basis of

our risk-averse planning framework is an approximation to the posterior belief distribution,

where we assume a Gaussian distribution and analytically compute first and second moments.

We apply this method to quantify the expected value and variance of the trace of the robot’s

terminating covariance for a sequence of candidate control actions, and use these moments to
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evaluate the risk-averse objective function. Because it encodes rational decision-making in

stochastic problems, we prefer the power utility function over other common utilities like

quadratic and exponential. Our simulation results show that risk-averse path planning for

mobile robotics applications yields more desirable outcomes than paths found with previous

approaches, using both trajectory-smoothing and sampling-based frameworks. Specifically, we

show the positive performance of the power utility function in navigation under uncertainty

and active SLAM scenarios.
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Figure 5.10 Active SLAM hybrid simulations for an underwater robot performing ship hull
inspection. Decisions to revisit to two salient waypoints are made at specific points throughout
the mission. (a)(b) The plot shows 100 simulations of traveling the trajectory resulting from
decision-making with a linear utility objective function. The linear function minimizes the trace
of the final robot covariance and often selects the revisit waypoint in a moderately-salient region
centered at pose 270. Despite a low expected uncertainty, simulations show a wide variability in
outcome due to the randomness in acquisition along this path. (c)(d) With the power penalty
function, the robot often prefers the revisit waypoint at pose 320, where camera registrations are
more likely to be acquired. 100 simulations of this resulting path show a much tighter distribution
of outcomes.
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Chapter 6

Conclusions

Autonomous mobile robots operating in a priori unknown environments demand a comprehen-

sive framework that integrates the core competencies of localization, mapping, and planning.

This thesis proposed work in active visual simultaneous localization and mapping (SLAM)

for underwater environments, with a focus on autonomous ship hull inspection with the

Hovering Autonomous Underwater Vehicle (HAUV). The contribution areas of this work

can be loosely characterized by the three main components of an active SLAM system: (i)

search, (ii) evaluation, and (iii) selection. Below we outline the contributions in relation to

these areas.

6.1 Contributions

We proposed a Gaussian belief-space planning formulation in Chapter 2 as an approximation

to the underlying partially observable Markov decision process (POMDP), where we represent

the robot belief as a Gaussian distribution and track its evolution using Bayesian inference.

By predicting the belief into the future, we can perform an optimization to select a sequence

of control actions for active SLAM. In the underwater environment, visual loop-closures are

difficult to predict, so our formulation considers the randomness in future measurements and

randomness in their acquisitions. This leads to a random posterior belief distribution. We also

proposed the use of Gaussian process (GP) regression to model the probability of registrations

throughout the environment, allowing us to accurately predict future measurements for

planning. The developed formulation serves as the mathematical foundation for the other

chapters in this thesis.
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Search

In Chapter 3, we proposed a full active SLAM framework for autonomous ship hull inspection

in order to efficiently survey a target environment subject to bounds on navigation uncertainty.

As a main contribution, we combined sampling-based planning techniques with our formulation

of Chapter 2 to search hundreds of possible revisit paths throughout the environment. We

also proposed an opportunistic approach to selecting revisit actions that allows the robot to

gather loop-closure measurements at any point during the mission. Our algorithm was tested

in hybrid simulations and real-world field trials of seafloor and hull-relative inspections.

Evaluation

Information-theoretic objectives required for quantifying the benefit of candidate actions

are expensive to evaluate. Therefore, we proposed two concepts in Chapter 4 related to

reducing the complexity of planning evaluations. First, we investigated compressing the

representation of the predicted belief with an online graph sparsification algorithm, and

showed that planning with an approximate distribution in place of the original system can

save computation time while preserving the same decision-making outcomes. Second, we

proposed the use of the Bayes tree as an efficient data structure for planning in active SLAM.

The Bayes tree allowed us to identify constrained variable orderings and cache subtrees in

order to reuse computations between candidate plan evaluations.

Selection

Finally, Chapter 5 detailed our contributions toward designing objective functions for active

SLAM that are risk-averse with respect to localization uncertainty. We proposed an ana-

lytic approach to approximating the posterior belief distribution as Gaussian. Inspired by

expected utility theory, we examined rational behavior under stochastic outcomes within the

optimization, and showed that our proposed methodology leads to desirable action selections

for active SLAM.

6.2 Future Work

There are many potential areas of future work motivated by the methods and results in this

thesis. Some of the more interesting avenues are discussed below.
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Improvements to the Proposed Methods

There are a number of ways the methods proposed in this document can be improved. First,

empirical evidence suggests that the HAUV belief is not always adequately represented by a

Gaussian distribution, specifically in cases of failed data association or external, unmodeled

disturbances. Accounting for non-Gaussian beliefs in the planning formulation is an open

area of research in the belief-space planning community.

Second, the algorithmic contributions of this thesis all motivate follow-up questions that

are worth pursuing. For example, the online graph sparsification algorithm prompts the

question of if/when the linear constraints resulting from approximate marginalization with

generic linear constraint (GLC) will be sufficient to describe the removed nonlinear factors.

Coverage Planning

One natural way to extend the research in active SLAM is to remove the dependence on

the nominal exploration policy from the proposed framework. Throughout this document,

the nominal exploration policy serves as the baseline for ensuring full area coverage and

providing high-level guidance through the environment. The candidate actions we consider

are all diversions from this policy to gather loop-closures, but all eventually return to this

default behavior. Future work into full coverage planning is necessary in order to remove this

dependence.

Multi-session and Multi-robot Planning

All of the inspections considered in this document are single-vehicle, single-session missions.

However, there is ongoing work within the HAUV project toward multi-session SLAM

capabilities [102], wherein the robot co-registers separate inspection dives to a single reference

frame. In fact, the multi-session approach is a virtual necessity in order to densely survey very

large environments due to finite battery life, frequent operational faults, and limited access

to the ships. The active SLAM problem changes significantly considering the multi-session

context: there may be prior information about the environment that can be exploited, there

may be multiple uncertain reference frames to account for in the prediction, etc.

In a related concept, the multi-session capabilities can be expanded to multi-robot

capabilities, where two or more vehicles simultaneously survey a single environment in a

cooperative fashion. The active SLAM problem changes in this setting as well. Planning

for cooperative actions can improve overall performance [134], robots may be equipped

with different perceptual sensors that can provide heterogeneous information about the

environment, and distribution and communication between vehicles now becomes an issue.
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Appendix A

Hovering Autonomous Underwater

Vehicle

This appendix provides information on the Hovering Autonomous Underwater Vehicle

(HAUV).

A.1 Payload Information

The sensor payload of the HAUV is provided in Fig. A.1 and Table A.1.

Figure A.1 HAUV payload diagram.
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Table A.1 Payload Characteristics of the HAUV

Description
Prosilica GC1380 12-bit digital stills, fixed-focus, monochrome, 1 Megapixel
Periscope Camera Monocular Prosilica GC1380 in water-proof housing

Underwater Camera
(monocular, pre-2013)

Monocular Prosilica GC1380 in water-proof housing

Underwater Camera
(stereo, post-2013)

Two Prosilica GC1380s in separate water-proof bottles,
linked via Fast Ethernet

Lighting 520 nm (green) LED
IMU Honeywell HG1700

Depth Keller pressure, 1-σ noise at 10 cm
Imaging Sonar Sound Metrics 1.8 MHz DIDSON

DVL RDI 1200 kHz Workhorse; also provides four range beams
Thrusting Five rotor-wound thrusters

Battery 1.5 kWh lithium-ion
Dry Weight 79 kg
Dimensions 1 m× 1 m× 0.45 m

A.2 Waypoint Controller

The simultaneous localization and mapping (SLAM) system reports poses in the 3D Cartesian

coordinate frame {x, y, z}. The HAUV internally reports poses in the hull-relative frame

{h, v, s}, where h is the horizontal along-hull distance over the hull manifold, v is the vertical

along-hull distance over the hull manifold, and s is the distance from the hull (normal to

the manifold). In order to send waypoint commands to the vehicle, we must transform the

relevant poses from the SLAM coordinate frame to the HAUV hull-relative frame. This is a

complex computation, so we transform between these frames with a series of approximations

that are continuously recomputed (5 Hz or 10 Hz) by the waypoint controller software.

These approximations are detailed in Fig. A.2 and Fig. A.3. Each approximation consists of

computing the straight-line vector from the current pose to the desired pose and projecting

this vector into the local hull-relative coordinate frame, done in two steps.

The first step in the transformation from {x, y, z} to {h, v, s} is the rotation about the

z-axis to the intermediate frame {h, r, z}, shown in Fig. A.2:

h = −x sin θ + y cos θ,

r = −x cos θ − y sin θ,

z = z,

(A.1)

where θ is the heading of the current vehicle pose. The second step is the rotation about
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Figure A.2 The vector x12 represents the offset from the current pose x1 to the desired pose x2,
expressed in the SLAM frame. We must express this vector in the vehicle’s hull-relative frame
before sending control commands. The first step to transform from SLAM frame {x, y, z} to HAUV
hull-relative frame {h, v, s} is to transform to the intermediate frame {h, r, z} by rotating about the
z-axis by the vehicle’s current heading, θ. The distance ’a’ approaches the true horizontal error
between current pose x1 and desired waypoint x2.

the h-axis to the final {h, v, s} frame, shown in Fig. A.3:

h = h,

v = −r sinφ+ z cosφ,

s = r cosφ+ z sinφ,

(A.2)

where φ is the current Doppler velocity log (DVL) angle.

As the vehicle travels from current pose x1 to desired waypoint x2, the distance ’a’ in

Fig. A.2 represents the error in h. This local approximation of the horizontal error approaches

the true horizontal error as the vehicle controls to the desired waypoint. Similarly, the distance

’b’ in Fig. A.3 represents the local approximation to the vertical error, which converges to the

true vertical error as the vehicle follows the curvature of the hull. The setpoint for distance

from the hull (s2) is set to the distance from the hull at the desired waypoint.
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Figure A.3 The final step to transform from {x, y, z} to {h, v, s} is to rotate about the h-axis
by the current DVL angle, φ. The distance ’b’ approaches the true vertical error as the vehicle
converges to the desired waypoint.
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