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Abstract—We report a decentralized extended information filter
(DEIF) algorithm designed for single-beacon cooperative acoustic
navigation of one or more client underwater vehicles. In single-
beacon cooperative acoustic navigation, ranges and state informa-
tion from a single reference source (the server) are used to improve
localization and navigation of an underwater vehicle (the client).
The ranges and state information are obtained using underwater
acoustic modems and a synchronous-clock time-of-flight paradigm.
Apart from the server’s acoustic data broadcasts, the client has no
access to the server’s position or sensor measurements. We show
that at the instance of each range measurement update, the DEIF
algorithm yields identical results for the current vehicle state esti-
mate as the corresponding centralized extended information filter
(CEIF), which fully tracks the joint probability distribution be-
tween the server and client. We compare the state estimation re-
sults of the DEIF algorithm with that of a CEIF and three other
filters reported in the literature. The evaluation is performed using
both simulated data and an experimental dataset comprised of one
surface craft and two autonomous underwater vehicles.

Index Terms—Decentralized estimation, distributed robot
systems, information filters, marine robotics, networked robots.

I. INTRODUCTION

THIS paper reports the derivation, simulation, and experi-
mental evaluation of a decentralized extended information

filter (DEIF) algorithm for single-beacon cooperative acoustic
navigation. The DEIF is designed for use within an acoustic
underwater navigation paradigm using synchronous clocks and
one-way-travel-time (OWTT) measurements [1], [2], although
the DEIF’s formulation may have applicability in other low-
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Fig. 1. The minimum time between updates for each client using two-way
travel-time (TWTT) ranging (upper panel) is the cumulative sum of the TWTT
for each client. In contrast, the minimum time between updates for each client
using OWTT ranging (lower panel) remains constant, regardless of the number
of clients.

throughput, distributed estimation applications outside of this
reported scenario.

In the subsea domain, our goal is to enable high-precision
absolute navigation of underwater vehicles without expensive
sensor suites, and for missions with length scales on the order of
100 km. As the cost of underwater vehicles has decreased, it has
become tractable to deploy multiple vehicles to collect scientific
data in the world’s oceans. Deployments of multiple low-cost
vehicles enable the collection of datasets over length scales too
large to be covered by a single vehicle or too dangerous to risk
an expensively instrumented vehicle. However, the requirement
to estimate the position of multiple vehicles simultaneously, es-
pecially vehicles without expensive, state-of-the-art navigation
sensors, provides a challenge for existing navigation systems.

Most underwater acoustic navigation systems are narrowband
and are based upon measuring two-way travel-time (TWTT)
time-of-flight ranges [3], [4]. In these systems, each vehicle
must interrogate the acoustic network in order to obtain a time-
of-flight measurement between it and all replying nodes. As a
result, as illustrated in Fig. 1, the rate at which multiple ve-
hicles can receive navigation updates decreases linearly as the
number of navigated vehicles in the water increases. In com-
parison, OWTT ranging can be determined by knowing pre-
cisely the transmit and receive times of an underwater acoustic
telemetry packet. The result is a direct one-way time-of-flight
measurement from source to receiver. Thus, when a server node
broadcasts to the network, all receiving client nodes can pas-
sively measure their one-way time-of-flight to the server node.
The advantage over TWTT ranging is that OWTT ranging read-
ily scales to a multi-vehicle environment within a server/client
architecture, because the overall update rate for each client
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remains constant. The disadvantage is increased complexity in
the hardware design because all nodes must carry synchronized
stable clock hardware.

In our work, we employ the Woods Hole Oceanographic In-
stitution (WHOI) Micro-Modem, i.e., an underwater acoustic
modem capable of synchronous-clock transmission [5], [6].
This synchronous-clock feature allows the Micro-Modem to
directly and accurately measure time of arrival (TOA) between
a source and receiver when using a user-supplied external ref-
erence clock. This common time base allows for a synchronous
modem communication/navigation system, whereby acoustic
telemetry broadcasts can encode time of origin information
as well as local state information. Acoustic telemetry packets
can be broadcast to the vehicle network, allowing all receiving
nodes to passively measure their OWTT to the source node.
The OWTT-derived range knowledge, when used in conjunc-
tion with the decoded acoustic telemetry data and other onboard
vehicle navigation data, provides a mechanism to enable coop-
erative acoustic navigation.

We have previously reported centralized algorithms for
synchronous-clock, OWTT, cooperative, acoustic navigation
and evaluated their performance using experimental data from
both shallow-water [2], [7] and deep-water field trials [8], [9]. In
this paper, we present a novel decentralized algorithm, evaluate
its performance with experimental data, and compare the re-
sults with other commonly used estimation frameworks. Within
the context of single-beacon navigation, the decentralized ap-
proach provides a flexible, scalable solution for vehicle naviga-
tion. Navigation algorithms that rely on a centralized observer
suffer from the severely limited bandwidth and high latency
associated with underwater acoustic communication in compar-
ison with typical land-based radio frequency communication
networks [10]. Given the speed of sound in water (∼1500 m/s),
transmitting acoustic data over ranges on the order of kilome-
ters results in latency on the order of seconds. Although the
useful channel capacity of acoustic modem technology has in-
creased dramatically in recent years, achieving throughput of up
to 5000 bps [5], operationally the average throughput is on the
order of 10–50 bps due to the low duty cycle with which these
messages are typically transmitted during deep-water at-sea op-
eration [11]. The proposed DEIF is well suited to single-beacon
navigation over limited-capacity and high-latency underwater
acoustic telemetry because this distributed approach only re-
quires a small, fixed quantity of information to be transmitted
from the server to the client.

The contributions of this study build primarily on our previous
work [12], [13] and include the following:

1) a detailed theoretical derivation and analysis of the DEIF
algorithm;

2) a comprehensive analysis of the DEIF algorithm based on
simulation and real-world experimental data;

3) a thorough comparison of the DEIF algorithm with other
OWTT navigation frameworks found in the literature and
used throughout the community.

The DEIF algorithm reported herein consists of two parts.
The first runs on the server, which is assumed to be a moving
vehicle (a ship or another underwater vehicle, for example), but

the server could also be a fixed beacon. The second part is de-
signed to run locally on a submerged vehicle, which is referred to
as the client, with real-time access to the client’s own onboard
navigation sensors and infrequent, asynchronous reception of
acoustic broadcasts from the server vehicle. Notably, the client
does not have access to real-time measurements from the server,
but only information that is contained in the server’s acoustic
broadcasts. Note that we characterize this filter as “decentral-
ized,” as opposed to “distributed” because we do not employ a
fusion center [14].

The rest of this paper is organized as follows: Section II
describes previous work in several relevant areas. Section III
presents the derivation of the DEIF and shows that it produces
identical results to that of a centralized extended information fil-
ter (CEIF) (the dual equivalent of a centralized extended Kalman
filter) immediately following each range measurement update.
Sections IV and V present implementation details and results
evaluating the performance of the DEIF and other reported ap-
proaches, using both simulated data and real-world experimental
data. This comparison is performed across several operational
scenarios, including when significant mutual correlation exists
between the server and the client. Section VI discusses prac-
tical considerations of the DEIF algorithm, and Section VII
concludes this paper.

II. PREVIOUS WORK

The results in decentralized single-beacon cooperative navi-
gation reported in this paper are informed by several areas of re-
search, discussed below: single-beacon underwater navigation,
decentralized multi-robot cooperative localization, decentral-
ized estimation in the context of multiple underwater vehicles,
and the use of the information filter for navigation in the general
field of mobile robotics.

A. Single-Beacon Underwater Navigation

Single-beacon navigation relies on range measurements from
a single beacon, which is referred to as the server, to provide a
position reference to one or multiple client vehicles. The server’s
position estimate is typically more accurate than that of the
clients’ either through access to continuous or intermittent geo-
referenced position information, e.g., from a global positioning
system (GPS), or because the server has high fidelity sensors that
allow for more accurate dead-reckoning than the clients, e.g., a
high-grade inertial measurement unit. The observability require-
ments of such server–client networks are explored in [15]–[17].
Any form of navigation that relies solely on range observations
for localization is fundamentally limited by the geometry of the
source and receiver. However, the relative observability of the
two vehicles can inform an intelligent server control strategy, as
in [18], to drive down uncertainty in the client.

Navigation with a single, fixed beacon, whose position is
known a priori, has been reported using several different estima-
tion techniques—a least-squares approach by Scherbatyuk [19]
and Baccou and Jouvencel [20], and a vehicle-based extended
Kalman filter (EKF) by Larsen [21] and Gadre and Stilwell [16].
Navigation with respect to a moving reference beacon, whose
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position is not known a priori, is reported by McPhail and
Pebody [22] using a nonlinear least-mean-squares method; by
Eustice et al. [2], [7] using a maximum likelihood estimation
method; and by Webster et al. [8], [9] using a centralized ex-
tended Kalman filter (CEKF). As reported, each of these meth-
ods is only structurally tractable for post-processing, although
the authors of [2], [7], and [22] suggest improvements that would
allow for real-time implementations. Morice and Veres [23] re-
port geometric bounding techniques that are applicable in real
time, and simulation results for range-based underwater naviga-
tion. See [8] for an extensive review of single-beacon navigation.

B. Cooperative Multi-robot Localization

As fielding teams of robots with complementary sensor char-
acteristics has become more practical, research in decentralized,
multi-robot cooperative localization has intensified. Roumelio-
tis and Bekey [24] present a distributed EKF solution that tracks
the global state composed of all robot positions. Other dis-
tributed approaches incorporating relative robot observations
include particle filters by Howard [25], and graph-based meth-
ods by Kim et al. [26] and Indelman et al. [27]. These methods
require unconstrained bandwidth, a nonlossy communication
channel, or both. These can be achieved in post-processing, but
are impractical in real time for an underwater acoustic network
given the restrictions of the underwater acoustic channel [28].

Ribeiro et al. [29] and Nerurkar et al. [30] perform distributed
cooperative localization only requiring the transmission of a sin-
gle bit per measurement within their sign-of-innovation Kalman
filter. This quantized method is able to construct an approxima-
tion of the centralized filter onboard each platform, although is
not tolerant of a lossy channel.

A distributed information filter-based approach for multi-
vehicle cooperative localization is proposed by Bailey et al. [31].
Each vehicle in the network maintains a local pose-graph (a
graph where edges are constraints and nodes are poses) that
fuses local measurements with observations of the relative-pose
to other vehicles. A central fusion center then processes local
pose-graphs and relative-pose observations to estimate the full
joint distribution over all vehicle poses. To efficiently transmit
local pose-graphs to the central server, the authors partition the
local pose-graph into segments according to a “product-rule de-
composition.” When the platform transmits new nodes within its
pose-graph to a fusion center, this interplatform message compo-
sition is equivalent to the delta information packets used herein
and first presented by Webster et al. [12]. The DEIF algorithm
presented herein is similar to the algorithm in [31] applied to the
two-vehicle unidirectional communication topology. Our client
vehicle, however, runs a single filter, whereas [31] maintains a
separate client filter and fusion center.

Cooperative localization has also been addressed within the
larger framework of decentralized data fusion—see [32], for
example, and [14]. In the latter, the authors present a system that
employs an information filter that uses a distributed Cholesky
modification for delayed states. This enables individual clients
to share their local estimates within the network without the
use of a centralized fusion center. Another research area that

is related to multi-robot localization is the use of consensus
algorithms, for tasks such as cooperative multi-robot mapping
[33].

C. Decentralized Underwater Multi-vehicle Navigation

Decentralized estimation in the context of underwater com-
munication and navigation faces unique constraints in terms
of low data rates and high latency, which renders many of the
decentralized estimation solutions from terrestrial applications
unsuitable for use with underwater vehicles.

An approach to decentralized underwater navigation, which
is reported by Maczka et al. [34], treats each range measurement
as originating from an independent source (to minimize acoustic
data telemetry) and fuses them in a Kalman filter ignoring any
correlation between the sender and receiver. The authors refer to
this method as the egocentric extended Kalman filter (EEKF),
because it does not consider possible correlation between the
navigation estimates of each vehicle. This method has modest
data telemetry requirements, is robust to packet loss, and easily
scales to large networks; however, ignoring correlation among
the vehicles can cause overconfidence and divergence, as is
noted [34], which states: “The complete system behavior when
the cross covariance terms Pij are neglected is of great interest.
These terms represent the information that is common between
vehicles i and j. Neglecting them results in larger Kalman gains
for each vehicle, overly optimistic covariance calculations, and
could result in the divergence of the Kalman filter. . ..”

Bahr et al. [35] address cooperative localization of multiple
underwater and surface vehicles using a bank of decentralized
vehicle-based filters. This study reports the use of multiple sur-
face vehicles with access to GPS to provide range measurements
to the underwater vehicles. An acoustic broadcast from a sur-
face vehicle encodes the mean and covariance estimate of that
vehicle, and multiple receiving vehicles use the acoustic broad-
cast to perform a range measurement update. In order to avoid
overconfidence, the authors present a bookkeeping approach,
which is referred to as the interleaved update (IU) algorithm,
in which each vehicle runs multiple Bayes estimators that track
the source of each range measurement.

In a separate work, Bahr et al. [36] present a multi-vehicle
cooperative localization method that, as an expansion of the
moving long baseline concept proposed by Vaganay et al. [37],
encompasses multiple range sources and real-time operations.
Fallon et al. [38] generalize [36] to consider navigation in the
context of a single range source. Similar to our work, Fallon
et al. [38] rely on a single, moving, georeferenced server to sup-
port the localization of multiple vehicles through asynchronous
acoustic broadcasts. The authors present a client-based EKF and
a minimization strategy that uses current and historic server po-
sitions, ranges between client and server positions (both current
and historic), and the distance traveled by the client between
range measurements. Like in the EEKF algorithm [34], the
server and clients are assumed to be uncorrelated, and range
measurement updates are performed using the absolute posi-
tion and covariance of the server. One of the benefits of the
formulation in [38] is that the algorithm is trivially robust to
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packet loss, although ignoring the correlation between clients
and server may lead to an overconfident estimate of the client
position, as noted in [34].

In a separate work, Fallon et al. [39] present a measurement
distribution framework that allows multiple platforms to share
navigation information (including intervehicle range measure-
ments) to enable a fully consistent distributed solution. The
framework is based upon each node locally recreating the state
of the entire system using range measurements between nodes
and knowledge of each node’s dead-reckoning between succes-
sive range measurements. The method provides a bookkeeping
mechanism that relies on acknowledgments between vehicles to
eventually provide all of the requisite information to each node.
Once a node has collected information for the entire system up to
a certain time (range measurements and dead-reckoning infor-
mation for all nodes), a fully consistent cooperative navigation
solution can be calculated. The convergence rate of this algo-
rithm is sensitive to packet loss, as it requires the retransmission
of data packets that are not acknowledged.

D. Extended Information Filter for Navigation and SLAM

The Kalman filter in the inverse covariance form, which is
known as the information filter, has several properties that make
it a good candidate for navigation in multi-robot applications.
Derived in detail by Mutambara [40], the extended information
filter (EIF) has been employed in distributed form for terres-
trial robot applications such as vehicle navigation by Bozorg
et al. [41], simultaneous localization and mapping (SLAM) by
Thrun and Liu [42] and Reece and Roberts [43], and multi-
robot localization by Bailey et al. [31] (as described earlier).
The EIF has also been used successfully within decentralized
estimation for linear systems with known network topologies by
Grime et al. [44]. In the context of underwater vehicles, there
are examples of the EIF being employed in SLAM algorithms
by Eustice et al. [45] and in a distributed fashion by Diosdado
and Ruiz [46].

Nonlinear smoothing algorithms have become popular in the
SLAM community due to advances in sparse linear-algebra
techniques [47], [48]. A delayed-state filtering SLAM frame-
work, such as [45] and the work reported herein, is also a
smoothing framework over the delayed states. The key differ-
ence being that nonlinear smoothing algorithms periodically
relinearize constraints, whereas a filter linearizes only once.
Fallon et al. [49] present an underwater navigation algorithm
fusing independent OWTT observations from a surface vehi-
cle with side-scan in a nonlinear incremental smoothing and
mapping framework (iSAM). In practice, the use of nonlinear
filtering frameworks that do not relinearize is widespread and
known to provide accurate estimates [50].

III. DECENTRALIZED EXTENDED INFORMATION FILTER

We consider the problem of estimating the pose of a client
vehicle given acoustic range observations from the server to the
client, as illustrated in Fig. 2. The CEKF [8], [9], which has
concurrent access to sensor data from all vehicles, serves as
the “gold-standard” and is well suited to modeling this coop-
erative localization problem for its ability to track correlation

Fig. 2. Server poses (circles) and client poses (triangles) are linked by the
range measurement. As described later, at the time-of-arrival (TOA), the central-
ized filter has access to the server’s measurements between the time-of-launch
(TOL) and the TOA, whereas the DEIF does not.

between multiple vehicles. Although communicating the sen-
sor measurements from each underwater vehicle in real time
to the CEKF is not (practically) feasible, many filtering opera-
tions in the information form of the CEKF, i.e., the CEIF, have
properties that lend themselves to distributed computation. The
DEIF algorithm provides a way to distribute the computation of
a CEIF for a server and client vehicle under a low bandwidth
requirement.

The implementation of the DEIF requires two separate fil-
ters, each of which processes sensor data causally and asyn-
chronously. The server-side filter has real-time access to its local
sensor data only; it is independent of, and has no knowledge of,
the client state, client sensor measurements, or range measure-
ments. At the time-of-launch (TOL) of each acoustic broadcast,
the server-side filter computes a compact fixed-size representa-
tion of its state and uncertainty to transmit acoustically to the
client. As described by Webster et al. [51], the server-to-client
range is measured using the OWTT of the acoustic broadcast
assuming a known sound velocity profile. The client-side filter
has real-time access to the client’s sensor data and the asyn-
chronous acoustic broadcasts from the server, but does not have
access to the server’s raw sensor measurements, except for the
processed information contained in the server-to-client acoustic
broadcasts. The DEIF algorithm allows the client filter to ex-
actly reconstruct the CEIF/CEKF at the TOA of server acoustic
broadcasts.

In the following, we present a review of the salient features of
the CEIF that lead to its distributed operation within the DEIF.
We then report the DEIF algorithm.

A. Extended Information Filter

The EIF is characterized by the information matrix Λ and the
information vector η, which can be defined in terms of the mean
μ and covariance Σ of the state vector x as

Λ = Σ−1 , η = Λμ (1)

where

Σ = E
[
(x − μ)(x − μ)�

]
, μ = E[x] (2)

and E[·] is the expectation operator [50].
1) Process Prediction: For the general process prediction

equations, we consider a state vector with two terms in it: the
current state xk of a vehicle and a collection of delayed states
(i.e., previous states) xp . The stacked vector xk represents the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEBSTER et al.: DECENTRALIZED EXTENDED INFORMATION FILTER FOR SINGLE-BEACON COOPERATIVE ACOUSTIC NAVIGATION 5

combined state at time k given all data up through time k

xk =
[
x�

k , x�
p

]�
(3)

and has an associated information matrix and vector given by

Λk =
[

Λkk Λkp

Λpk Λpp

]
, ηk =

[
ηk

ηp

]
. (4)

Here, Λii and ηi represent the blocks of the stacked information
matrix Λk and vector ηk at time k, respectively, corresponding
to state component xi∈{k,p}.

The process model predicting the state one time step ahead is
given by

x̄k+1 = f(xk ,uk+1) + vk (5)

with distribution p(xk+1 ,xp |Z1:k ,U1:k+1), where

Λ̄k+1 =
[

Ψk Q−1
k F kΩ−1

k Λkp

ΛpkΩ−1
k F�

k Q−1
k Λpp − ΛpkΩ−1

k Λkp

]
(6)

η̄k+1 =
[

Q−1
k F kΩ−1

k ηk + Ψk

(
f(μk ,uk+1) − F kμk

)

ηp − ΛpkΩ−1
k η�

k

]

. (7)

Here, Z1:k is the set of sensor measurements up through time k,
U1:k+1 is the set of control inputs up through time k + 1, f(·) is
the nonlinear process model with Jacobian F k (evaluated about
μk ), Qk is the covariance of the zero-mean Gaussian process
noise vk , and, for notational convenience,

Ψk = (Qk + F kΛ−1
kk F�

k )−1 (8)

Ωk = Λkk + F�
k Q−1

k F k (9)

η�
k = ηk − F�

k Q−1
k

(
f(μk ,uk+1) − F kμk

)
(10)

as derived by Eustice et al. [45].
The blocks of the information matrix and vector correspond-

ing to past states, Λpp and ηp , respectively, are only changed by
an additive term when they are propagated forward in time. For
a linear process model, the additive term can be calculated with-
out linearization or need for the current mean. Furthermore, all
other blocks of the information matrix and vector are changed
in a way that does not depend on the information of the past
states.

2) Process Prediction With Augmentation: In (6) and (7),
the current state at time k is propagated to time k + 1 so that

x̄k+1 =
[
x�

k+1 , x�
p

]�
. (11)

If we augment the stacked state vector to include the state at
time k + 1 in addition to the original states

x̄k+1 =
[
x�

k+1 , x�
k , x�

p

]�
(12)

then the process prediction equations, which represent the distri-
bution p(xk+1 ,xk ,xp |Z1:k ,U1:k+1), have a different structure
described by

Λ̄k+1 =

⎡

⎢
⎣

Q−1
k −Q−1

k F k 0

−F�
k Q−1

k Ωk Λkp

0 Λpk Λpp

⎤

⎥
⎦ (13)

η̄k+1 =

⎡

⎢
⎣

Q−1
k

(
f(μk ,uk+1) − F kμk

)

η�
k

ηp

⎤

⎥
⎦ (14)

where the above equations use the same variable definitions as
in (6) and (7). Equations (13) and (14) can each be written as
the sum of two terms:

Λ̄k+1 =

⎡

⎢
⎣

Q−1
k −Q−1

k F k 0

−F�
k Q−1

k F�
k Q−1

k F k 0

0 0 0

⎤

⎥
⎦

+

⎡

⎢
⎣

0 0 0

0 Λkk Λkp

0 Λpk Λpp

⎤

⎥
⎦ (15)

η̄k+1 =

⎡

⎢
⎣

Q−1
k

(
f(μk ,uk+1) − F kμk

)

−F�
k Q−1

k

(
f(μk ,uk+1) − F kμk

)

0

⎤

⎥
⎦

+

⎡

⎢
⎣

0

ηk

ηp

⎤

⎥
⎦ . (16)

The first term contains the process prediction information and
the second term contains the prior information (4) at time k,
but padded with zeros corresponding to the state at time k + 1.
These zeros reflect that at time k, prior to prediction, there is
no information about the state at time k + 1. This operation is
purely additive and, in fact, only modifies the Λkk and ηk blocks
of the original information matrix and vector.

As observed by Eustice et al. [45], prediction with augmenta-
tion results in Λ̄k+1 having a sparse, block-tridiagonal structure.
The sparsity of Λ̄k+1 is important in the context of acoustic nav-
igation because it bounds the amount of information that must
be acoustically transmitted from the server to the client in order
for the client to fully reconstruct the server’s estimated state (see
Section III-C).

3) Measurement Update: The observation model is

zk = h(x̄k ) + wk (17)

which leads to an updated posterior, i.e., p(xk ,xp |Z1:k ,U1:k ),
that is parametrized by

Λk = Λ̄k + H�
k R−1

k Hk (18)

ηk = η̄k + H�
k R−1

k

(
zk − h(μ̄k ) + Hk μ̄k

)
(19)

where zk is the measurement vector, Rk is the covariance matrix
of the zero-mean Gaussian measurement noise wk , and h(·) is
the nonlinear measurement model with Jacobian Hk (evaluated
about μ̄k ) [45].

The information matrix is additively updated by the matrix
outer product H�

k R−1
k Hk . In general, the measurement Jaco-

bian Hk is sparse resulting in an update step that only affects
a few subblocks of the information matrix and vector. Onboard
navigation sensor observations at the server or client only mod-
ify, respectively, the server state or client state. Range measure-
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Fig. 3. Graphical comparison of the CEIF and the DEIF’s server and client filters. In each sequence, the “+” and “×” indicate additive and nonadditive operations,
respectively. Red and black operators designate operations performed by the server and client vehicles, respectively. The gray areas in the first and last panels depict
the nonzero sparsity pattern of the information matrix. Both the server and client DEIF filters track a portion of the centralized state vector, with the client-side
DEIF achieving equality with the CEIF (for the states they share in common) immediately following the range measurement update.

ments between the server and the client change both the current
client state and the delayed server state.

B. Centralized Extended Information Filter Operation

The CEIF is simply the information form dual [40] of the
CEKF [8], [9]. It processes sensor data from all vehicles causally
and asynchronously in real time.

1) Centralized Extended Information Filter State Vector:
Since range measurements are generally made between server
TOL states and client TOA states, the CEIF tracks a stacked
state vector containing the current server and client states, as
well as copies of the TOL server states. At each acoustic TOL, a
copy of the server state is appended onto the state vector via the
prediction with augmentation operation (14). After n acoustic
broadcasts, the state vector consists of

xk =
[
x�

sk
, x�

sTOLn
, . . . , x�

sTOL2
, x�

sTOL1
, x�

ck

]�
(20)

where we use the following notation: xk denotes the entire
stacked state at time k; xsk

and xck
are the current server and

client states, respectively; and xsTOLi
is the server state at the ith

TOL. We note that this delayed-state framework is a smoothing
algorithm, as TOL delayed states benefit from new information.

Before the first server-to-client broadcast, the information
matrix is block diagonal between the server and client, as the
vehicles have shared no information. Since initially each vehi-
cle state evolves independently of the other vehicle, the CEIF
operation mirrors the operation of two independent information
filters, each tracking one vehicle.

2) Server-to-Client Broadcasts: At the TOA of server broad-
cast, the client measures the OWTT-derived range to the server.
The observation model for the range measurement is

zk =
∥
∥
∥xcTOAx y z

− xsTOLx y z

∥
∥
∥ + wk (21)

where “xyz” indicates the position components of the client and
server state vectors, and wk ∼ N (0, Rk ) is the measurement
noise. Noise in the range measurement is a result of several

nonlinear error sources including multipath and timing impreci-
sion. The error distribution, while strictly non-Gaussian, is com-
monly modeled as Gaussian [18], [52], [53] following an outlier
rejection step. As mentioned previously, the range measurement
Jacobian is sparse, as it only involves the client TOA position
and the server TOL delayed state. Therefore, only blocks of the
information matrix and vector corresponding to these states are
modified during the measurement update.

Following the first range measurement update, the informa-
tion matrix contains nonzero off-diagonal blocks between the
server TOL state (i.e., a delayed state) and the current client
state. However, because of the structure of prediction in the
information form, the current server state information evolves
in a way that does not depend on its delayed state given a lin-
ear server process model [see (6) and (7)], and the block of
the information matrix corresponding to the delayed state only
changes additively. Moreover, measurement updates for the cur-
rent server state do not depend on its delayed state given linear
observation models. This implies that the server accumulates
information (through prediction and measurement updates with
linear models) independent of the range measurement update.
The CEIF operation is illustrated in Fig. 3.

The above understanding motivates the design of the DEIF al-
gorithm, which distributes the CEIF server prediction and mea-
surement updates to a filter running onboard the server, while a
separate filter running onboard the client processes client pre-
diction and measurement updates, including range measurement
updates.

C. Server-Side DEIF Operation

The server-side filter has real-time access to sensor data
only from server-based sensors; it is independent of the client
state, client sensor measurements, and range measurements. The
server-side implementation is described in Algorithm 1.

1) Server-Side Decentralized Extended Information Filter
State Vector: The standalone server filter maintains an estimate
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of the current server state as well as copies of TOL server states.
Each time a new acoustic range packet is broadcast (i.e., at the
TOL), a copy of the current server state is appended onto the
state vector. This results in a state vector, after n acoustic packets
have been transmitted, of the form

xsk
=

[
x�

sk
, x�

sTOLn
, . . . , x�

sTOL2
, x�

sTOL1

]�
(22)

where we have adopted the following notation convention: xsk

denotes the entire stacked server state at time k; xsk
is the

current server state; and xsTOLi
is the server state when the

ith range packet was broadcast. The corresponding informa-
tion matrix has a sparse, block tridiagonal structure. As in the
CEIF, only the blocks of the information matrix corresponding
to the current server state and the most recent TOL delayed state
are affected by predictions and measurement updates—changes
in the information matrix and vector are constrained between
successive TOLs.

In addition to the information matrix Λsk
and vector ηsk

that
characterize the current server state xsk

, a copy of the infor-
mation matrix and vector at the last TOL are also stored (i.e.,
ΛsTOLn −1

and ηsTOLn −1
). This allows the server to compute the

difference in the information matrix and vector between TOLs,
which is termed the “delta information.”

2) Delta Server Information for Acoustic Transmission: To
initiate a range measurement, the server broadcasts a range
packet containing delta information about the server state. This
delta information encapsulates all information gained via pre-
dictions and measurement updates about the server state since
the last TOL

ΔΛsTOLn −1 :n
= ΛsTOLn

− Λ′
sTOLn −1

(23)

ΔηsTOLn −1 :n
= ηsTOLn

− η′
sTOLn −1

(24)

where Λ′
sTOLn −1

and η′
sTOLn −1

represent the information at the last
TOL but padded with zeros to match the dimension of ΛsTOLn

and ηsTOLn
. The zero padding represents the fact that at the last

TOL, the server had no information about its state at the next
TOL. These range packets are processed onboard the client-side
DEIF to reconstruct the CEIF, as described in Section III-D.

The calculation and transmission of delta server information,
as described here, allows us to delegate the task of processing

server sensor data in the CEIF to an independent server-side
DEIF. The server-side DEIF operation is depicted in Fig. 3.

D. Client-Side DEIF Operation

The client-side DEIF has real-time access to the client’s on-
board sensor data and the asynchronous range packets from
the server but does not have access to the server’s raw sensor
measurements; the only server state information available to the
client is that which is encoded in the server-to-client acoustic
broadcasts. The client-side DEIF reconstructs a local copy of the
server-state by sequentially incorporating information encapsu-
lated in the acoustic broadcasts. The client-side implementation
is described in Algorithm 2.

1) Client-Side State Vector: In addition to the current client
state, the DEIF maintains a copy of historic server states recon-
structed from the delta information broadcasts. As a result, the
DEIF state vector consists of two parts: the current client state
and the TOL server delayed states

xck
=

[
x�

sTOLn −1
, . . . , x�

sTOL2
, x�

sTOL1
, x�

ck

]�
(25)

where we adopt the convention that xck
denotes the entire

stacked client state vector at time k; xck
is the current client

state; and xsTOLi
is the server TOL state when the ith acoustic

packet was broadcast. The client-side DEIF maintains the same
state vector as the CEIF with the exception that the client-side
DEIF does not track the current server state xsk

. We also note
that, unlike the server, the client is able to use nonlinear process
and observations models, as in [12]. The client vehicle is also
free to add delayed-state client poses in order to estimate its
smooth trajectory.

2) Incorporating Delta Server Information: At the TOA of a
range packet onboard the client, the delta information included
in the packet is incorporated followed by the range measurement
update. The delta information is incorporated into the client-side
DEIF by simple addition, in the analogous operation to (23) and
(24):

ΛcTOAn
= Λ′

cTOAn
+ ΔΛsTOLn −1 :n

(26)

ηcTOAn
= η′

cTOAn
+ ΔηsTOLn −1 :n

(27)

where Λ′
cTOAn

is the client information matrix at the current
TOA before the delta information is incorporated, and ΛcTOAn

is the client information matrix at the current TOA after the
delta information is incorporated. The client-side information is
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padded with zeros to reflect that, prior to incorporating the delta
information packet, the client has no information regarding the
newest TOL server state.

3) Range Measurement Updates: At the TOA of the range
packet, after the delta information is incorporated, the range
measurement update is performed. This operation is equiva-
lent to the corresponding operation in the CEIF. As noted in
Section III-C2, the delta information encapsulates all of the in-
formation that the filter has gained about the server state since
the last acoustic packet was broadcast. The simplicity of this
computation is one of the advantages of the information filter.
The client-side DEIF operation is depicted in Fig. 3.

E. Equivalency of DEIF and Centralized Filter

Immediately after performing a range update, the client-side
DEIF is identical to the equivalent centralized filter (CEIF or
CEKF) estimate for the states that they have in common. There
are several subtleties in this observation that we address here for
clarity.

1) Filter Distributions: A range measurement is an obser-
vation between the server position at the TOL and the client
position at the (later occurring) TOA, i.e., xsTOL

and xcTOA
, re-

spectively. Comparing the probability distributions of the cen-
tralized filter and DEIF immediately after the range measure-
ment update, we find that they are not strictly identical:

DEIF :

p
(
xcTOA

,xsTOL

∣
∣zrTOA

,Z1:TOA
c ,U1:TOA

c , Z1:TOL
s , U1:TOL

s

)

(28)

Centralized :

p
(
xcTOA

,xsTOL

∣
∣zrTOA

,Z1:TOA
c ,U1:TOA

c , Z1:TOA
s , U1:TOA

s

)

(29)

where zrTOA
is the most recent OWTT range measurement,

Z1:TOA
c is the set of client sensor measurements up to the TOA,

U1:TOA
c is the set of client control inputs up to the TOA, Z1:TOL

s

is the set of server sensor measurements up to the TOL, and
U1:TOL

s is the set of server control inputs up to the TOL. Note
that the centralized filter has access to the server’s sensor mea-
surements and control inputs between the TOL and the TOA of
which the DEIF has no knowledge (see Fig. 2).

The ramifications of this are that the DEIF performs a range
measurement between the current client state and the best esti-
mate of the server’s state at the TOL given server sensor mea-
surements and control inputs only up to the TOL. In contrast,
the centralized filter performs a range measurement between the
current client state and the best estimate of the server’s state at
the TOL given server sensor measurement and control inputs up
to the TOA. Thus, the centralized filter is performing a smooth-
ing operation on the server’s state at the TOL, because it has
access to additional information from the server’s sensors after
the data packet was broadcast.

2) Two-Step Delayed Update: To address this apparent dis-
crepancy and to provide a fair comparison of the DEIF and the

CEIF in our experiments, we use a two-step delayed update in
the centralized filter. First, we perform an update for the range
measurement with only server measurements and control inputs
up through the TOL:

p
(
xcTOA

,xsTOL

∣
∣zrTOA

,Z1:TOA
c ,U1:TOA

c ,Z1:TOL
s ,U1:TOL

s

)
.

(30)
Second, we perform another update for the server using mea-
surements and control inputs occurring between the TOL and
the TOA (see Fig. 2):

p
(
xcTOA

,xsTOL

∣
∣zrTOA

,Z1:TOA
c ,U1:TOA

c ,Z1:TOL
s ,U1:TOL

s ,

ZTOL:TOA
s , UTOL:TOA

s

)
. (31)

This provides a fair comparison so that the DEIF distribution
in (28) is identical to the centralized filter distribution in (30),
without compromising the centralized filter’s final distribution,
i.e., (31) is identical to (29).1

Between range measurements, the centralized filter and DEIF
estimates of the client’s state will not be identical. Correlation
that develops between the client and server states causes new
server measurements to smooth the client state in the central-
ized case. Since these server measurements are not immediately
available to the client-side DEIF, no smoothing occurs until
after a delta information packet is received. However, at the
instant immediately after each range measurement update, the
filter estimates will be identical (when using the two-step de-
layed update) because the information contained in the delta
information represents all previous server measurements.

F. Ramifications of Filter Design

A final note on this derivation, which is mentioned briefly in
Section III-B, is that the server’s process and observation mod-
els must be linear in order for the delta information calculated
onboard the server to match the delta information that would be
calculated in the equivalent CEIF. Linear plant and observation
models guarantee that the process prediction and measurement
updates are independent of the server’s current state. Thus, the
calculated delta information is independent of the actual value
of the state. This is essential because the standalone server filter
will have a different estimate of the server’s current state than
the CEIF, a result of the CEIF’s server estimate being condi-
tioned on previous range measurements. In contrast, there is no
linearity requirement for the client models, as shown in [12],
which employs a six-degree-of-freedom (DOF) nonlinear pro-
cess model for the client.

It is also worth noting that, in practice, it is undesirable, and
unnecessary, for the state vector dimension to grow without
bound, as per (22) and (25). Instead, we marginalize out the
oldest historic server states on both the server and the client
in order to maintain a fixed-length state vector dimension [45].

1From an implementation perspective, we augment the centralized state vector
with copies of the server state at every measurement event between the TOL and
the TOA to achieve a premarginalized equivalent of (29) and then retroactively
apply the TOL to TOA server measurements, followed by marginalizing out the
extra server states to arrive at (31).
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Fig. 4. Algorithm performance is tested using two different two-node topolo-
gies: Scenario A, where the server (shown as a ship) has continuous access to
GPS, and Scenario B, where the server (shown as an AUV) has only intermittent
access to GPS.

Minimally, the most recent TOL delayed state must be kept
in the stacked state vector in order for the delta information
computation to be carried out correctly.

IV. IMPLEMENTATION DETAILS

The results described herein illustrate two points. First, we
demonstrate the numerical equivalence of the DEIF and the
CEIF, which was established analytically in Section III. Second,
we compare the performance of the DEIF with several alternate
filtering approaches reported in the literature. The comparison,
which is similar to that presented by Walls and Eustice [13],
is performed in post-processing between a pure dead-reckoned
(DR) algorithm, a CEIF/CEKF, an EEKF, the IU algorithm, and
a simple EKF that broadcasts the GPS position of the server in
each acoustic packet instead of filtering the server state. The state
description and process model, as well as the implementation
of these filters, are described below.

The different filter frameworks are compared using both sim-
ulated and real-world experimental data for two operational sce-
narios illustrated in Fig. 4: a server that has continuous access to
GPS (e.g., a support ship or surface buoy), and a server that does
not have continuous access to GPS (e.g., one autonomous un-
derwater vehicle (AUV) surfacing intermittently to receive GPS
updates, while supporting a continuously submerged AUV).

A. Vehicle State Description

Since attitude and depth are easily instrumented with bounded
error, we consider only x, y horizontal position estimation dur-
ing our experiments. Range measurements can easily be pro-
jected to the local-level plane with knowledge of relative ve-
hicle depth. Furthermore, it is advantageous to represent the
vehicle state with the smallest dimension possible to minimize
bandwidth requirements for transmitting state information over
the acoustic channel. Results using a full 6-degree-of-freedom
(DOF) nonlinear process model with the DEIF have been pre-
viously reported by Webster et al. [12]. Further discussions on
the justification and ramifications of using this simplified state
model for the server and client are covered in Section VI.

We employ a 2-DOF process model for both the server and
the client vehicles

x = [x, y, ẋ, ẏ]� (32)

where the platform position in the local-level plane is denoted
by the x, y pair, and the corresponding world-frame velocities
are ẋ and ẏ.

Each filter is implemented using a constant-velocity linear
process model resulting in a one-step prediction of the form

x̄k+1 = F kxk + vk . (33)

Here, F k is the discrete-time linear state transition matrix:

F k =
[

I IΔT

0 I

]
(34)

where ΔT is the period between time steps.

B. Filter Implementations

We have implemented four filters and a DR filter for compar-
ison with the DEIF algorithm. Each is briefly described below.
We employ the convention of using “s” and “c” subscripts to
designate the server and client states, respectively.

1) Centralized Extended Information Filter: The CEIF
serves as our benchmark gold-standard solution. The CEIF is a
post-processing formulation that has access to all sensor mea-
surements from all vehicles and tracks the stacked state of the
server and client platforms:

x = [x�
s ,x�

c ]�. (35)

Since the CEIF is the dual equivalent of the CEKF (each is the
inverse of the other), for ease of comparison, we implement the
CEKF algorithm, as reported in [8] and [9]. For cohesiveness
with the previous discussion, throughout our results, we refer
to this CEKF generated result as the CEIF. The estimated mean
and covariance of the equivalent CEIF are

μ =
[

μs

μc

]
, Σ =

[
Σss Σsc

Σcs Σcc

]
. (36)

The mean and covariance follow the standard Kalman prediction
equations with a combined state transition matrix F k and noise
covariance matrix Qk given by

F k = blkdiag(F sk
,F ck

) (37)

Qk = blkdiag(Qsk
,Qck

). (38)

To correctly model range measurement updates, the CEIF aug-
ments the global state to include the server state at TOL

x′ = [x�
s ,x�

c ,x�
sTOL

]�. (39)

This allows the filter to perform a standard nonlinear Kalman
update with the OWTT observation, as in (21). Once the mea-
surement update has been completed, the augmented TOL state
can be marginalized out in order to maintain a bounded state
vector dimension.

Initially, the navigation estimates of each vehicle are uncor-
related so that the global covariance matrix is block diagonal.
However, sharing intervehicle range measurements builds cor-
relation between vehicle navigation estimates [13]. The CEIF
tracks this correlation because it has access to all measurements
from all platforms.

2) Egocentric Extended Kalman Filter: The egocentric dis-
tributed approach assumes that each range measurement origi-
nates at an independent source. This is essentially equivalent to a
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CEKF with all of the off block-diagonal elements of the covari-
ance matrix actively held to zero. Distributing this filter simply
requires that the server transmit its local mean and covariance
μs and Σs , respectively. Acoustic data packets are constant size,
as only local information is transmitted. Therefore, the EEKF
can trivially scale up to arbitrarily large networks and is robust
to packet loss. However, because internode correlation is not
tracked, this method can result in an overconfident estimate of
uncertainty [34].

In order to perform a range measurement update, the client
constructs a combined state vector and covariance matrix by
appending the transmitted statistics of the server

μ′
c =

[
μc

μs

]
Σ′

c =
[
Σcc 0

0 Σss

]
. (40)

The measurement update then proceeds with the standard
Kalman update with the measurement model given in (21).
Following the update, the state elements corresponding to the
server are marginalized out. Note that this filter does not track
correlation; the next range update will follow the same update
procedure assuming no correlation, resulting in a double count-
ing of information because the client’s state has already been
informed by the server’s state.

3) Interleaved Update Algorithm: Bahr et al. [35] propose
the IU algorithm as a solution to the problem of inconsistency
seen in the EEKF. To avoid overconfidence, the IU algorithm
maintains a set of different vehicle navigation estimates and only
performs range measurement updates between estimates that are
known to be uncorrelated. The IU algorithm is a bookkeeping
approach that can be employed with any filtering modality (e.g.,
EKF, particle filter, unscented Kalman filter). For comparison
with the other acoustic navigation frameworks considered in
this paper, we present the IU as applied to an EKF.

Under the IU framework, each platform maintains a bank of
EKFs. At time k, the set of state vectors and covariance matrices
tracked by the ith vehicle, which are denoted Ui(k) and Σi(k),
respectively, are defined as

Ui(k) =
{
μ1

i (k), . . . ,μ2v −1

i (k)
}

(41)

Σi(k) =
{
Σ1

i (k), . . . ,Σ2v −1

i (k)
}

(42)

where v is the total number of vehicles in the network. Each
platform also stores the origin of every acoustic broadcast in
a transmission matrix T , where each row represents a filter
within its local set and each column corresponds to a vehicle in
the network. Entries T ij represent the last time that the ith filter
used the jth vehicle to update its navigation estimate. During an
acoustic broadcast, each source node transmits its transmission
matrix, as well as its entire bank of filters. A receiving node up-
dates each of its filters by searching for a filter in the transmitted
set that does not contain an update that could be correlated.
This ensures that double counting of information will not occur
where correlation could exist. The full mechanics of this update
step are described in [35].

In a two-vehicle network with unidirectional communication,
range measurement updates are performed using the server’s
transmitted state estimate and a client state estimate that has

Fig. 5. Iver31—one of the two custom Iver AUVs used in field experiments.

not previously been informed by a server estimate (i.e., DR),
thus ensuring that correlated information is not naively fused.
As a result of this methodology, the IU produces an estimate of
the client’s state that has unbounded growth in uncertainty over
time, although it improves over DR.

4) Raw Global Positioning System: The raw GPS filtering
scheme mirrors the implementation of the EEKF, except each
server broadcast encodes an independent observation of its po-
sition from a raw GPS measurement. In this scenario, each mea-
surement is assumed to be uncorrelated and results in a consis-
tent, bounded-error, position estimate. Note that this method is
only applicable for a server that has an independent position ob-
servation source available when the acoustic packet is sent. This
is in contrast with all other methods described, which utilize all
range measurements between the server and client regardless
of access to GPS. The raw GPS algorithm offers robustness to
packet loss and the ability to fuse information from multiple
independent servers (see [2] and [36]).

V. RESULTS

This section reports results using both simulated data and ex-
perimental data for a three-vehicle deployment consisting of one
surface platform (a ship) and two autonomous underwater ve-
hicles (AUVs). The simulated dataset mimics the experimental
dataset, using identical sensor characteristics and approximately
the same geometry. We explore the performance of each filter-
ing strategy within the two communication topologies shown in
Fig. 4.

A. Vehicle and Sensor Descriptions

The physical experiment was performed using a topside sur-
face craft and two modified Ocean-Server, Inc., Iver2 AUVs,
Iver28 and Iver31, which are depicted in Fig. 5. Each AUV
includes a typical advanced DR sensor suite, as tabulated in
Table I and reported in [54]. The AUVs measure body-frame
velocities with a 600 kHz RDI Doppler velocity log (DVL),
attitude with a Microstrain 3DM-GX1-AHRS, and depth with a
Desert Star Systems SSP-1 digital pressure sensor. We project
the body-frame velocity measurements into the world-frame via
the Microstrain and treat these as linear observations of the ẋ, ẏ
elements of our state with a first-order covariance estimate of
the combined DVL and AHRS covariance. To calibrate the com-
pass, we fit a nonlinear bias function to the magnetic compass
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TABLE I
NAVIGATION SENSORS: SAMPLING FREQUENCY AND NOISE CHARACTERISTICS

reading during a separate calibration mission. The topside plat-
form only observes world-frame position as measured by GPS.
The noise values reported in Table I were used for all other
sensor models. Additionally, the OWTT measurement model
included a Mahalanobis distance check as a final outlier rejec-
tion test. The sensor characteristics of the experimental system
(see Table I) were also used to create the simulated dataset.

The schedule and source of the acoustic broadcasts were de-
fined by a fixed, 145-s time-division multiple access (TDMA)
schedule, consisting of six server broadcasts and four subsea
broadcasts from each AUV. This TDMA cycle corresponds to
one acoustic broadcast roughly every 15 s. The acoustic broad-
casts were transmitted with a carrier frequency of 25 kHz and
frequency-shift keying encoding (rate 0 on the WHOI Micro-
Modem). Each acoustic broadcast lasted approximately 2–3 s
and transmitted 32 bytes of data.

B. Survey Description

During the experimental survey, the AUVs were programmed
to follow rectangular grid survey patterns, oriented approxi-
mately 90◦ to each other, with tracklines of roughly 500 m
length spaced 50 m apart, as shown in Fig. 6. The vehicles sur-
faced at the end of each trackline to acquire GPS, but these GPS
measurements are not used during the filter comparisons below,
except where noted. The survey lasted 1.4 h, during which the
AUVs traveled 5.1 and 5.3 km, respectively. During the sur-
vey, we positioned the ship upwind (North) and then drifted
downwind (South) sending and receiving acoustic data packets.
This trajectory was repeated several times. The simulated sur-
vey is designed to mimic the experimental survey, except that
the ship’s track is simplified to a diamond shape. In the survey
simulation, the vehicle track length is 5.3 km, and the simulated
survey lasts 1.5 h.

We compare the performance of the filters in post-processing.
The datasets are bidirectional (all nodes broadcast and receive
data packets), time-synchronized, and recorded to disk. As a
result, we are able to selectively ignore certain measurements to
artificially create the different experimental conditions, such as
limiting the server’s access to GPS measurements. Scenario A,
as depicted in Fig. 4, is performed by the ship supporting Iver28,
where Iver28 uses none of its GPS measurements. Scenario B, as
also depicted in Fig. 4, is performed by Iver28 supporting Iver31.
In this scenario, Iver28 only incorporates GPS measurements
during the portions of its survey shown in green in Fig. 6.

TABLE II
AVERAGE NORM OF THE DIFFERENCE BETWEEN CEIF AND DEIF

C. Equivalency of DEIF and Centralized Extended
Information Filter

Fig. 7 shows the norm of the difference of the state vector,
i.e., ‖xcD E IF − xcC E IF ‖2 , comparing the estimated mean of the
client state vector in the DEIF versus the CEIF over the course
of the survey. The four subplots show results for simulations in
Fig. 7(a) and experiments in Fig. 7(b), where Scenario A is on the
left and Scenario B is on the right. The lower plot of each of the
four subplots highlights the norm of the difference immediately
after the range measurements (marked by asterisks). The same
data are shown, but the ordinates on the lower plots have been
scaled by several orders of magnitude to show the precision with
which the DEIF is able to reproduce the results of the CEIF at
the TOA.

As discussed in Section III-E, the DEIF is specifically de-
signed to produce state estimates that are comparable with the
CEIF immediately after each range update; between range up-
dates the estimates differ primarily due to the smoothing effect of
subsequent server sensor measurements. The results from both
the simulation and the experiment (see Fig. 7) show these ef-
fects, where asterisks (*) mark the times immediately after range
measurement updates. Table II shows the average norm of the
difference between the CEIF and the DEIF over the course of
the survey for the different trials. The small variations between
the filters immediately after range updates are on the order of
fractions of a millimeter and are accounted for by round-off
errors associated with numerical precision.

The difference in the filter estimates between acoustic broad-
casts is larger in Scenario A (left plots in Fig. 7) because, in the
CEIF, absolute position measurements from GPS continuously
drive down the uncertainty in both the client and the server. In
contrast, in the DEIF, there is no additional absolute position
information between acoustic broadcasts, creating a difference
between the filters between acoustic broadcasts. In Scenario B
(right plots in Fig. 7), neither filter has access to absolute posi-
tion measurements, except during two discrete intervals. Thus,
the filters’ uncertainty estimates are more closely matched for
all time steps.

D. Filter Performance Comparison

We use two different metrics to compare the performance
of the filters: 3-σ uncertainty of the client position estimate
and normalized estimation error squared (NEES) averaged over
ten runs. The 3-σ bounds demonstrate each filter’s ability to
localize the client vehicle and provide a notion of consistency
when compared with the CEIF. The CEIF is our gold-standard
because it has access to all sensor measurements of all vehicles
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Fig. 6. Trajectories of the topside platform (a ship) and two AUVs during our field experiment (a) and in the simulated dataset (b). Sections of Iver28’s trajectory
shown in green indicate where its GPS measurements were incorporated into the filters during operational Scenario B (Iver28 supporting Iver31).

Fig. 7. Norm of the difference in client state between DEIF and CEIF for simulations (a) and experiments (b). The left column in each subfigure represents
Scenario A (ship with continuous access to GPS supporting Iver28); the right column represents Scenario B (Iver28 with intermittent access to GPS supporting
Iver31). The lower plots in all subfigures provide a scaled view of the ordinate axis for visual clarity. Note that in all cases, the CEIF and DEIF are numerically
equivalent at the TOA.
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Fig. 8. Simulation results for Scenario A (ship supporting Iver28) and Scenario B (Iver28 supporting Iver31) on the left and right, respectively. (a) Filter
estimated uncertainty. The inset in Scenario B shows where the DEIF uncertainty estimate differs briefly from the CEIF during the time when GPS was available.
(b) Correlation coefficient (absolute value) between the server and the client, as calculated by the CEIF. The development of significant correlation between the
server and the client is evident in Scenario B. (c) Ten-run average NEES. The horizontal black line indicates the one-sided χ2 95% confidence bound. Note that
the displayed NEES are smoothed with a 1-min moving average filter for ease of visibility and comparison. The percentages in the legend represent the amount of
time the (nonsmoothed) NEES for each filter exceeds the 95% confidence bound.

and, therefore, should have the lowest valid uncertainty estimate.
The NEES provides a true measure of filter consistency based on
whether the estimation errors of the filter are zero mean and have
magnitudes commensurate with the covariance of the filter [50].
Because the NEES can only be calculated when the true state of
the system is known, we calculate it for the simulated data only.
The performance of the filters is summarized here and discussed
in detail below for each filter.

Figs. 8 and 9 illustrate the results for all of the filters evaluated,
using simulated and experimental data, respectively. Both cases
show similar trends. Subfigures (a) in both Figs. 8 and 9 show
the 3-σ uncertainty estimate for each of the filters evaluated.
The DEIF has the lowest consistent uncertainty estimate and
most closely matches the CEIF in both scenarios. The EEKF
shows the next smallest uncertainty estimate in Scenario A but
produces an overly optimistic uncertainty estimate in Scenario
B that is not consistent with the CEIF. The raw GPS method

produces an uncertainty estimate that is larger than the EEKF
in Scenario A, and only a marginal improvement over DR in
Scenario B, because range measurements are only incorporated
when the server AUV has access to GPS measurements at the
surface. The IU algorithm produces an uncertainty estimate that
is the largest of the filters evaluated for Scenario A. The IU’s
uncertainty estimate shows an improvement over DR but is
unbounded in time.

Subfigures (b) in both Figs. 8 and 9 show the absolute corre-
lation coefficient between the server and the client in the CEIF
over the course of the survey (Scenario A). The development of
significant correlation between the server and client is evident
in Scenario B. The EEKF’s inconsistent estimate results from
ignoring this correlation (discussed below).

Fig. 8(c) compares the NEES for all filters against the 95%
confidence bound. Note that the NEES for each filter has been
smoothed over a 1-min window for readability. None of the
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Fig. 9. Experimental results for Scenario A (ship supporting Iver28) and Scenario B (Iver28 supporting Iver31) on the left and right, respectively. (a) Filter
estimated uncertainty. The inset in Scenario B shows where the DEIF uncertainty estimate differs briefly from the CEIF during the time when GPS was available.
(b) Correlation coefficient (absolute value) between the server and the client, as calculated by the CEIF. The development of significant correlation between the
server and the client is evident in Scenario B.

filters deviate far from the 95% chi-squared bounds, except for
the EEKF, which clearly produces an inconsistent estimate in
Scenario B when significant correlation between the server and
the client exists. Spikes in the NEES are clearly visible in the IU,
CEIF, and DEIF during vehicle turns at the end of the tracklines.
These are caused by the constant-velocity, linear process model
not accurately modeling turn dynamics. This, coupled with the
receipt of OWTTs measurements during turns (which drives
uncertainty down during the uncertain turn event), leads the filter
to temporarily be more confident in its position than is accurate.

1) Decentralized Extended Information Filter Results: The
DEIF navigation estimate onboard the client vehicle matches
the CEIF estimate within numerical precision at the TOA, as
seen in Fig. 7, for both simulated and experimental scenarios. In
Scenario B, Iver31’s uncertainty estimate differs briefly from the
CEIF during the time when GPS was available, as shown in the
insets of Figs. 8 and 9. Once surfaced, Iver28 receives several
GPS measurements, which immediately drive the uncertainty
down for both vehicles in the CEIF; however, it is not until the
next acoustic broadcast from the server vehicle (Iver28) that the
client platform’s DEIF (Iver31) is able to incorporate the delta
information with GPS and fully match the CEIF. The CEIF and
DEIF are identical immediately after each range measurements
but differ between broadcasts for as long as Iver28 is receiv-
ing GPS measurements. Note that in the simulated survey [see
Fig. 8(a)], the difference between the DEIF and the CEIF occurs
across multiple acoustic broadcasts; this is because the simula-
tion does not prevent acoustic broadcasts during the receipt of
GPS measurements.

2) Egocentric Extended Kalman Filter Results: The EEKF
uncertainty estimate closely matches the CEIF in Scenario A

when the correlation between the server and the client is small.
However, in Scenario B, both the simulation and experiment
clearly show that the EEKF fails to produce an estimate consis-
tent with the CEIF. This is a result of the large correlation that
persists between each vehicle’s position estimate causing the
client vehicle’s EEKF to double-count successive range mea-
surements, as described in Section IV-B. Relative range mea-
surements create large correlation between vehicles. Conversely,
absolute position observations tend to destroy correlation be-
tween previously correlated vehicles, which is why the EEKF
uncertainty estimate more closely matches the CEIF in Sce-
nario A. (See [13, App.] for a simplified example illustrating
this effect due to GPS.) The NEES computed in simulation
from Scenario B clearly demonstrates the inconsistency of this
filter in situations where vehicle estimates are highly correlated.

3) Raw Global Positioning System Results: The raw GPS
method in Scenario A results in a bounded-error position
estimate, with 3-σ uncertainty closer to the CEIF than the IU
algorithm, in both the simulation and the experiment. In
Scenario B, this method is an improvement over DR, but
not significantly because the server vehicle only sends range
packets during two short intervals when GPS is available. Note
that results from this method are not shown for the experimental
trial of Scenario B in Fig. 4 because the transducer on the
AUV is above the waterline when the vehicle is at the surface
receiving GPS, and is, therefore, unable to transmit range
packets. The drawbacks to this method are that it cannot
achieve the lowest uncertainty estimate without filtering topside
measurements (as with the CEIF) and that the server must
have had recent access to a GPS fix in order to execute a range
measurement. However, this algorithm is trivially robust to
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TABLE III
OPERATIONAL PACKET LOSS STATISTICS

packet loss or failure of the server node, and the client is able
to incorporate measurements from several independent servers
without modification and arrive at a consistent estimate.

4) Interleaved Update Algorithm Results: The IU algorithm
shows improvement over dead-reckoning with an uncertainty
estimate that is guaranteed to be consistent, as shown by its
NEES. However, the filter’s estimate exhibits unbounded growth
in uncertainty over time. As mentioned in Section IV-B3, this
is expected for a two-vehicle topology with unidirectional com-
munication.

VI. DISCUSSION

In this section, we discuss several topics related to the opera-
tional implementation of the DEIF: packet loss, filter telemetry
requirements, and when linear process models are required. We
also discuss possible (nonoptimal) extensions of the DEIF ap-
proach described herein to multi-vehicle topologies.

A. Packet Loss

The DEIF approach described herein relies on the sequential
broadcast and receipt of delta information packets. In prac-
tice, the nonlossy communication assumption cannot be met,
as packets are routinely lost to an often faulty acoustic com-
munication channel, making packet loss an operational concern
for real-time implementation. In the experimental dataset used
in this study, only successful acoustic broadcasts were used in
post-processing to run the filter. Table III tabulates the packet
loss statistics for each of the different communication paths.
The two entries in bold represent the communication paths used
to run the DEIF experiments reported here.

A number of possible solutions exist to address the issue
of packet loss when implementing the DEIF in real time for
use in the field. We describe several proposed methods below:
1) sending redundant information, 2) utilizing acknowledgments
from the client platform, and 3) an alternative formulation of the
delta information packet. In practice, we expect these and other
solutions to be developed and refined over time as this algorithm
matures and is used in the field.

1) Redundant Information Packets: Our first safeguard
against dropped acoustic packets is to broadcast redundant infor-
mation. A delta information message describes a transition of the
server state between consecutive TOLs, in particular, the delta
information at the nth TOL relates the server state from time
TOLn−1 to time TOLn , abbreviated ΔsTOLn −1 :n

. Since we cannot
rely on the client receiving every packet, we require the server
to broadcast delta packets corresponding to transitions from the
last k TOLs to the current TOL: ΔsTOLn −1 :n

, . . . ,ΔsTOLn −k :n
.

In this case, the server easily computes the delta packets, as
in (23) and (24), for each delta relation by marginalizing out
intermediate states. For example, the server vehicle tracks state

xsk
=

[
x�

sk
, x�

sTOLn
, . . . , x�

sTOLn −k

]�
.

To compute the delta packet corresponding to the transition
ΔsTOLn −k :n

, we simply marginalize out states corresponding to
TOLn−1 , . . . ,TOLn−k+1 and calculate the delta information as
per usual.

2) Client Acknowledgment: In practice, subsea vehicles typ-
ically send some minimal acoustic state data to report general
mission health. We propose to encode the last server TOL state
received, which is denoted TOL� , into each client state packet
sent to the server. Under this scheme, in addition to the standard
one-step delta information packet, i.e., ΔsTOLn −1 :n

, the server
would also broadcast the delta information relative to the last
known good TOL, i.e., ΔsTOL� :n

. This approach allows for the
client vehicle to resume normal usage should it ever miss a
regular one-step packet.

3) Alternate Packet Composition: Recently, Walls and
Eustice [55] proposed an alternate packet formulation, dubbed
the origin-state method, which allows the client vehicle to
reconstruct the server information matrix in a way that is robust
to packet loss. While this approach solves a different problem
than the DEIF, the authors of [55] have applied their algorithm
to a modified DEIF implementation and have shown it to be
robust to a lossy acoustic channel, subject to certain operational
restrictions.

B. Filter Telemetry Requirements

Because of the severe constraints imposed on data packet
size by the limited capacity of the acoustic channel, we include
a brief discussion of the telemetry requirements for the different
algorithms compared in this paper. The amount of data that can
be transmitted in an acoustic data packet depend on the car-
rier frequency, bandwidth, and encoding method of the signal,
as well as the characteristics of the local sound channel [11].
Currently, the WHOI Micro-Modem supports data rates ranging
from a single 32-byte frame per packet (rate 0, encoded with
frequency shift keying) to eight 256-byte frames per packet (rate
5, encoded with phase-shift keying) [5]. Assuming one broad-
cast every 15 s, the resulting maximum throughput varies from
128 bytes/min to 8 kb/min. The experiments, as described in
Section V-A, used rate 0.

The relative data packet size demanded by each filter is sum-
marized in Table IV for a server–client network topology. We
place a small overhead on each broadcast by including depth
information because we project range measurements into the
local-level plane. Both the EEKF and IU only require that lo-
cal state and covariance corresponding to x, y position be en-
coded, since each measurement is considered independent, and
the client filter only needs access to elements of the state in-
volved in the measurement update. Therefore, taking advantage
of symmetry, the EEKF and IU require transmitting two floats
for mean and three for covariance in the acoustic broadcast.
Note that the telemetry requirements for IU implemented in
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TABLE IV
TELEMETRY PAYLOAD REQUIREMENTS FOR A SERVER–CLIENT TOPOLOGY

an n-vehicle network with bidirectional communication grows
withO(n2). If the uncertainty of the GPS measurement is known
by the vehicle beforehand (a reasonable assumption), only two
floats for the x, y GPS position must be transmitted by the acous-
tic broadcast in the raw GPS method. Delta state in the DEIF is
computed between the last TOL augmented state and the current
state; therefore, the DEIF requires eight floats (2 × 4 for state
dimension four) for the delta information vector and 36 for the
delta information matrix in each data packet.

The DEIF∗ in the table refers to a DEIF in which the server
state contains only world-frame x, y position, further reduc-
ing the state model. In this case, the process model follows an
odometry-driven control input (e.g., integrated velocity mea-
surements) and white-noise. This implementation is the subject
of current research, and preliminary results, which are currently
under review, show that it achieves a far lower telemetry payload
at the cost of a less confident estimate.

C. Linear Process Models

As noted in Section III-F, the client process model is not re-
quired to be linear, but the server process model and observation
models must be linear for the DEIF to identically reproduce the
results of the CEIF. For the implementation of the DEIF de-
scribed herein, we employ a linear process model for the client
as well as the server for several reasons. For DOFs that are
well instrumented, compared with the actual system dynamics,
a common simplification of the process model is to exclude
those well-instrumented states from the set of estimated states.
For the AUVs used in this experiment, and many AUVs on the
market, attitude and depth are well instrumented compared with
the dynamics of the vehicle [56]. In addition, Webster et al. [12]
verified that the majority of the uncertainty resides in x, y po-
sition elements of the client state vector. Therefore, the use of
linear models for the client is a reasonable assumption.

A simplified process model for the server, in the case where
the server is a ship, is justified by the server’s continuous access
to GPS measurements. In addition, the simplified server process
model reduces the amount of data required to broadcast state in-
formation from the server to the client, an important operational
concern given the limited capacity of the underwater acoustic
channel [28]. Extending the DEIF framework to accommodate
a nonlinear server, while continuing to ensure identical results
between the CEIF and DEIF, would require that the client trans-
mit a new linearization point to the server following a range
measurement update.

Fig. 10. Two multi-vehicle topologies that are simple (suboptimal) extensions
of the DEIF: (a) the multi-client topology where a single server supports multiple
clients and (b) the cascaded network topology where clients also perform as
servers.

D. Multi-vehicle Topologies

Two suboptimal multi-vehicle estimation topologies that are
simple extensions of the DEIF are shown in Fig. 10. The first is a
multi-client topology, in which a single server supports multiple
clients. The second is a cascaded topology, in which the server–
client model described in this paper is extended such that the
client supports one or more additional subsea clients.

Extending the two-vehicle DEIF presented in this paper to
either multi-vehicle topology is trivial. In the multi-client topol-
ogy shown in Fig. 10(a), the server performs a single acoustic
broadcast, and each client runs its own independent DEIF with
no knowledge of the other clients. This is scalable to as many ve-
hicles as can operate within acoustic range of the server. Note,
however, that in this case, the DEIF does not reproduce the
distribution produced by a single global CEIF that tracks cor-
relation between all vehicles. Instead, each DEIF is equivalent
to a corresponding two-vehicle CEIF that tracks only the server
and an individual client.

In the serially connected network topology shown in
Fig. 10(b), unidirectional communication of position informa-
tion is a simple, cascaded implementation of two DEIFs. Note
that clients at the end of a serially connected network will have
access to all range information in the system and will be able
to exactly reproduce the results of the CEIF. However, interme-
diate clients will not, and, therefore, will not be able to exactly
reproduce the results of the CEIF.

The performance of the DEIF compared with other algorithms
presented in the literature has been investigated by Walls and
Eustice [13] for these topologies using experimental data from
a three-node network. Packet loss, as noted in Section VI-A,
remains an operational concern for both of these extensions.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a detailed derivation of the DEIF al-
gorithm for the synchronous-clock acoustic navigation of a sin-
gle subsea client vehicle. We showed analytically that the DEIF
exactly reproduces the estimate of the corresponding server–
client CEIF at the TOA. Simulation and experimental trials val-
idated the effectiveness of the DEIF at consistently localizing
the client vehicle, as well as reproducing the CEIF. A compar-
ative analysis demonstrated the performance of the DEIF and
several previously reported approaches to cooperative acoustic
navigation. Additionally, we showed that the DEIF performs fa-
vorably when compared with previously reported decentralized
acoustic cooperative localization algorithms.
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While the DEIF achieves excellent theoretical results, a real-
time implementation requires additional overhead to address
packet loss, as described in Section VI. Current on-going work
continues to investigate more robust information descriptions
that can handle dropped acoustic transmissions, such as the
preliminary work reported in [55]. Furthermore, we seek an
algorithm that can scale to larger networks and share informa-
tion bidirectionally to accommodate many AUVs operating over
very large operational areas.

REFERENCES

[1] R. M. Eustice, L. L. Whitcomb, H. Singh, and M. Grund, “Recent ad-
vances in synchronous-clock one-way-travel-time acoustic navigation,”
in Proc. IEEE/MTS OCEANS Conf. Exhib., Boston, MA, USA, Sep. 2006,
pp. 1–6.

[2] R. M. Eustice, H. Singh, and L. L. Whitcomb, “Synchronous-clock one-
way-travel-time acoustic navigation for underwater vehicles,” J. Field
Robot., vol. 28, no. 1, pp. 121–136, 2011.

[3] M. Hunt, W. Marquet, D. Moller, K. Peal, W. Smith, and R. Spindel, “An
acoustic navigation system,” Woods Hole Ocean. Inst., Woods Hole, MA,
USA, Tech. Rep. WHOI-74-6, Dec. 1974.

[4] P. Milne, Underwater Acoustic Positioning Systems. Houston, TX, USA:
Gulf, 1983.

[5] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The
WHOI micro-modem: An acoustic communications and navigation sys-
tem for multiple platforms,” in Proc. IEEE/MTS OCEANS Conf. Exhib.,
Washington, DC, USA, Sep. 2005, pp. 1086–1092.

[6] L. Freitag, M. Grund, J. Partan, K. Ball, S. Singh, and P. Koski, “Multi-
band acoustic modem for the communications and navigation aid AUV,”
in Proc. IEEE/MTS OCEANS Conf. Exhib., Washington, DC, USA, Sep.
2005, pp. 1080–1085.

[7] R. M. Eustice, L. L. Whitcomb, H. Singh, and M. Grund, “Experimental
results in synchronous-clock one-way-travel-time acoustic navigation for
autonomous underwater vehicles,” in Proc. IEEE Int. Conf. Robot. Autom.,
Rome, Italy, Apr. 2007, pp. 4257–4264.

[8] S. E. Webster, R. M. Eustice, H. Singh, and L. L. Whitcomb, “Advances
in single-beacon one-way-travel-time acoustic navigation for underwater
vehicles,” Int. J. Robot. Res., no. 8, pp. 935–950, Jul. 2012.

[9] S. E. Webster, R. M. Eustice, H. Singh, and L. L. Whitcomb, “Preliminary
deep water results in single-beacon one-way-travel-time acoustic naviga-
tion for underwater vehicles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., St. Louis, MO, USA, Oct. 2009, pp. 2053–2060.

[10] D. Kilfoyle and A. Baggeroer, “The state of the art in underwater acoustic
telemetry,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4–27, Jan. 2000.

[11] S. Singh, S. E. Webster, L. Freitag, L. L. Whitcomb, K. Ball, J. Bailey, and
C. Taylor, “Acoustic communication performance of the WHOI Micro-
Modem in sea trials of the Nereus vehicle to 11,000 m depth,” in Proc.
IEEE/MTS OCEANS Conf. Exhib., Biloxi, MS, USA, Oct. 2009, pp. 1–6.

[12] S. E. Webster, L. L. Whitcomb, and R. M. Eustice, “Preliminary results
in decentralized estimation for single-beacon acoustic underwater naviga-
tion,” in Proc. Robot. Sci. Syst. Conf., Zaragoza, Spain, Jun. 2010.

[13] J. M. Walls and R. M. Eustice, “Experimental comparison of synchronous-
clock cooperative acoustic navigation algorithms,” in Proc. IEEE/MTS
OCEANS Conf. Exhib., Kona, HI, USA, Sep. 2011, pp. 1–7.

[14] H. Mu, T. Bailey, P. Thompson, and H. Durrant-Whyte, “Decentralised
solutions to the cooperative multi-platform navigation problem,” IEEE
Trans. Aerosp. Electron. Syst., vol. 47, no. 2, pp. 1433–1449, Apr. 2011.

[15] T. Song, “Observability of target tracking with range-only measurements,”
IEEE J. Ocean. Eng., vol. 24, no. 24, pp. 383–387, Jul. 1999.

[16] A. Gadre and D. Stilwell, “A complete solution to underwater naviga-
tion in the presence of unknown currents based on range measurements
from a single location,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
Edmonton, AB, Canada, Aug. 2005, pp. 1420–1425.

[17] X. Zhou and S. Roumeliotis, “Robot-to-robot relative pose estimation from
range measurements,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1379–1393,
Dec. 2008.

[18] M. F. Fallon, G. Papadopoulos, J. J. Leonard, and N. M. Patrikalakis, “Co-
operative AUV navigation using a single maneuvering surface craft,” Int.
J. Robot. Res., vol. 29, no. 12, pp. 1461–1474, Oct. 2010.

[19] A. Scherbatyuk, “The AUV positioning using ranges from one transponder
LBL,” in Proc. IEEE/MTS OCEANS Conf. Exhib., San Diego, CA, USA,
Oct. 1995, vol. 4, pp. 1620–1623.

[20] P. Baccou and B. Jouvencel, “Homing and navigation using one transpon-
der for AUV, postprocessing comparisons results with long base-line nav-
igation,” in Proc. IEEE Int. Conf. Robot. Autom., Washington, DC, USA,
May 2002, vol. 4, pp. 4004–4009.

[21] M. B. Larsen, “Autonomous navigation of underwater vehicles,” Ph.D.
dissertation, Tech. Univ. Denmark, Kongens Lyngby, Denmark, Feb. 2001.

[22] S. McPhail and M. Pebody, “Range-only positioning of a deep-diving
autonomous underwater vehicle from a surface ship,” IEEE J. Ocean.
Eng., vol. 34, no. 4, pp. 669–677, Oct. 2009.

[23] C. P. Morice and S. M. Veres, “Geometric bounding techniques for under-
water localization using range-only sensors,” Proc. Inst. Mech. Eng. Part
I: J. Syst. Contr. Eng., vol. 225, no. 1, pp. 74–84, 2011.

[24] S. Roumeliotis and G. Bekey, “Distributed multirobot localization,” IEEE
Trans. Robot. Autom., vol. 18, no. 5, pp. 781–795, Oct. 2002.

[25] A. Howard, “Multi-robot simultaneous localization and mapping using
particle filters,” Int. J. Robot. Res., vol. 25, no. 12, pp. 1243–1256,
2006.

[26] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and
S. Teller, “Multiple relative pose graphs for robust cooperative mapping,”
in Proc. IEEE Int. Conf. Robot. Autom., May 2010, pp. 3185–3192.

[27] V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Graph-based distributed
cooperative navigation,” in Proc. IEEE Int. Conf. Robot. Autom., May
2011, pp. 4786–4791.

[28] J. Partan, J. Kurose, and B. N. Levine, “A survey of practical issues in un-
derwater networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 11,
pp. 23–33, Oct. 2007.

[29] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, “SOI-KF: Distributed
Kalman filtering with low-cost communications using the sign of innova-
tions,” IEEE Trans. Signal Process., vol. 54, no. 12, pp. 4782–4795, Dec.
2006.

[30] E. D. Nerurkar, K. X. Zhou, and S. I. Roumeliotis, “Hybrid estimation
framework for multi-robot cooperative localization using quantized mea-
surements,” Res. Note, Dept. Comput. Sci. Eng., Univ. Minnesota, Min-
neapolis, MN, USA, 2011.

[31] T. Bailey, M. Bryson, H. Mu, J. Vial, L. McCalman, and H. Durrant-
Whyte, “Decentralised cooperative localisation for heterogeneous teams
of mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom., May 2011,
pp. 2859–2865.

[32] T. Bailey and H. Durrant-Whyte, “Decentralised data fusion with delayed
states for consistent inference in mobile ad hoc networks,” Australian
Centre for Field Robotics, Univ. Sydney, Sydney, N.S.W., Australia,
Tech. Rep., 2007. (see http://www-personal.acfr.usyd.edu.au/tbailey/
techreports/index.html)

[33] R. Aragues, J. Cortes, and C. Sagues, “Distributed consensus on robot net-
works for dynamically merging feature-based maps,” IEEE Trans. Robot.,
vol. 28, no. 4, pp. 840–854, Aug. 2012.

[34] D. Maczka, A. Gadre, and D. Stilwell, “Implementation of a cooperative
navigation algorithm on a platoon of autonomous underwater vehicles,”
in Proc. IEEE/MTS OCEANS Conf. Exhib., Vancouver, BC, Canada, Oct.
2007, pp. 1–6.

[35] A. Bahr, M. Walter, and J. Leonard, “Consistent cooperative localization,”
in Proc. IEEE Int. Conf. Robot. Autom., Kobe, Japan, May 2009, pp. 3415–
3422.

[36] A. Bahr, J. J. Leonard, and M. F. Fallon, “Cooperative localization for
autonomous underwater vehicles,” Int. J. Robot. Res., vol. 28, no. 6,
pp. 714–728, Jun. 2009.

[37] J. Vaganay, J. Leonard, J. Curcio, and J. Willcox, “Experimental validation
of the moving long base-line navigation concept,” in Proc. IEEE/OES
Autonom. Underwater Veh., Jun. 2004, pp. 59–65.

[38] M. F. Fallon, G. Papadopoulos, and J. J. Leonard, “Cooperative AUV
navigation using a single surface craft,” in Proc. Field Service Robot.,
Cambridge, MA, USA, Jul. 2009, pp. 1–10.

[39] M. Fallon, G. Papadopoulos, and J. Leonard, “A measurement distribution
framework for cooperative navigation using multiple AUVs,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2010, pp. 4256–4263.

[40] A. G. O. Mutambara, Decentralized Estimation and Control for Multisen-
sor Systems. Boca Raton, FL, USA: CRC, 1998.

[41] M. Bozorg, E. Nebot, and H. Durrant-Whyte, “A decentralised navigation
architecture,” in Proc. IEEE Int. Conf. Robot. Autom., May 1998, vol. 4,
pp. 3413–3418.

[42] S. Thrun and Y. Liu, “Multi-robot SLAM with sparse extended infor-
mation filers,” in Robotics Research, (ser. Springer Tracts in Advanced



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON ROBOTICS

Robotics), P. Dario and R. Chatila, Eds. Berlin, Heidelberg, Germany:
Springer-Verlag, 2005, vol. 15, pp. 254–266.

[43] S. Reece and S. Roberts, “Robust, low-bandwidth, multi-vehicle map-
ping,” in Proc. Int. Conf. Inf. Fusion, Jul. 2005, vol. 2, pp. 1319–1326.

[44] S. Grime, H. F. Durrant-Whyte, and P. Ho, “Communication in decen-
tralized data-fusion systems,” in Proc. Amer. Control Conf., Jun. 1992,
pp. 3299–3303.

[45] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-
state filters for view-based SLAM,” IEEE Trans. Robot., vol. 22, no. 6,
pp. 1100–1114, Dec. 2006.

[46] J. Diosdado and I. Ruiz, “Decentralised simultaneous localisation and
mapping for AUVs,” in Proc. IEEE OCEANS Eur. Conf. Exhib., Jun.
2007, pp. 1–6.

[47] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1204, Dec. 2006.

[48] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-
ing and mapping,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1365–1378,
Dec. 2008.

[49] M. Fallon, M. Kaess, H. Johannsson, and J. Leonard, “Efficient AUV
navigation fusing acoustic ranging and side-scan sonar,” in Proc. IEEE
Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 2398–2405.

[50] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation With Applications
to Tracking and Navigation. New York, NY, USA: Wiley, 2001.

[51] S. E. Webster, R. M. Eustice, C. Murphy, H. Singh, and L. L. Whitcomb,
“Toward a platform-independent acoustic communications and navigation
system for underwater vehicles,” in Proc. IEEE/MTS OCEANS Conf.
Exhib., Biloxi, MS, USA, Oct. 2009, pp. 1–7.

[52] D. A. Smallwood and L. L. Whitcomb, “Model-based dynamic position-
ing of underwater robotic vehicles: Theory and experiment,” IEEE J.
Ocean. Eng., vol. 29, no. 1, pp. 169–186, Jan. 2004.

[53] L. L. Whitcomb, D. R. Yoerger, H. Singh, and J. Howland, “Advances
in underwater robot vehicles for deep ocean exploration: navigation, con-
trol, and survey operations,” in Robotics Research: The Ninth Interna-
tional Symposium, J. Hollerbach and D. Koditschek, Eds. London, U.K.:
Springer-Verlag, 1999, ch. 13, pp. 439–448.

[54] H. Brown, A. Kim, and R. Eustice, “Development of a multi-AUV SLAM
testbed at the University of Michigan,” in Proc. IEEE/MTS OCEANS Conf.
Exhib., Quebec City, QC, Canada, Sep. 2008, pp. 1–6.

[55] J. M. Walls and R. M. Eustice, “An origin state method for lossy
synchronous-clock acoustic navigation,” in Proc. IFAC Workshop Nav-
igat. Guidance Control Underwater Veh., Porto, Portugal, Apr. 2012.

[56] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of underwater
vehicle navigation: Recent advances and new challenges,” in Proc. IFAC
Conf. Manoeuvr. Control Marine Craft, Lisbon, Portugal, Sep. 2006.

Sarah E. Webster (S’08–M’12) received the B.S.
degree in mechanical engineering from the Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, in 2000 and the Ph.D. degree in mechanical
engineering from the Johns Hopkins University, Bal-
timore, MD, USA, in 2010.

She is currently a postdoctoral scholar with the
Ocean Physics Department, Applied Physics Labo-
ratory, University of Washington, Seattle, WA, USA.
Her research interests include navigation for au-
tonomous underwater vehicles, decentralized estima-

tion, and long-term autonomy.

Jeffrey M. Walls (S’11) received the B.S. degree in
mechanical engineering from the University of Vir-
ginia, Charlottesville, VA, USA, in 2009 and the M.S.
degree in mechanical engineering from the Univer-
sity of Michigan, Ann Arbor, MI, USA, in 2011.
Currently, he is pursuing the Ph.D. degree with the
Department of Mechanical Engineering, University
of Michigan.

His research interest are in the areas of cooperative
navigation and coordinated planning for autonomous
underwater vehicles.

Louis L. Whitcomb (S’86–M’95–SM’02–F’11) re-
ceived the Ph.D. degree in electrical engineering from
Yale University, New Haven, CT, USA, in 1992.

He is currently a Professor with the Department
of Mechanical Engineering, with secondary appoint-
ment in the Department of Computer Science, the
Johns Hopkins University, Baltimore, MD, USA,
where he is the Director of the Laboratory for Compu-
tational Sensing and Robotics. His research interests
include the design, dynamics, and control of robotic
systems.

Dr. Whitcomb is the Louis R. Sardella Faculty Scholar with the G.W.C.
Whiting School of Engineering, The Johns Hopkins University.

Ryan M. Eustice (S’00–M’05–SM’10) received the
B.S. degree in mechanical engineering from Michi-
gan State University, East Lansing, MI, USA, in 1998
and the Ph.D. degree in ocean engineering from the
Massachusetts Institute of Technology/Woods Hole
Oceanographic Institution Joint Program, Woods
Hole, MA, USA, in 2005.

Currently, he is an Assistant Professor with the
Department of Naval Architecture and Marine En-
gineering, University of Michigan, Ann Arbor, MI,
USA, with joint appointments in the Department of

Electrical Engineering and Computer Science and in the Department of Me-
chanical Engineering. His research interests include autonomous navigation
and mapping, computer vision and image processing, mobile robotics, and au-
tonomous underwater vehicles.


